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Abstract 

In this thesis, new methods in solid mechanics are developed for analyzing vibrations in 

structural systems with particular emphasis on passenger cars in high-speed trains. Three 

interrelated problems are examined. 

The first part of the thesis is on the propagation of vibration energy from the wheels 

to the car body. System identification is used to estimate the dynamic properties of the 

suspension using acceleration data from full speed test runs of a prototype train. Fatigue 

reliability is assessed using deterministic and stochastic methods, and static and dynamic 

fatigue test procedures are developed for an experimental test facility at the Korea Railroad 

Research Institute. 

The highest stresses are found to be at the corners of the windows and doors of the 

aluminum car body panels. In the next part of the thesis, a semi-analytical method is devel-

oped for analyzing these stress concentrations. The basic idea is to combine a conformal 

mapping approach based on complex variable theory with finite element analysis. In this 

manner, a relatively coarse mesh can be used to predict highly localized stresses around 

openings in plates under bending loads. The approach is useful for complex structures 
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where it would be difficult to include fine meshes around every panel opening. 

Since advanced car body designs tend to have tubular frames, the last part of the thesis 

focuses on free vibrations of orthotropic cylindrical shells. Perturbation theory is used to 

derive closed-form analytical expressions for the frequency-wavelength dispersion relation 

and for the natural frequencies and mode shapes. These new analytical results provide 

insight into the characteristics of cylinder vibrations and are also useful for system identi-

fication. 

Advisor: Dr. Takeru Igusa 

Readers: Dr. Benjamin W. Schafer and Dr. James K. Guest 
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Chapter 1 

Introduction 

Many structural systems such as automotive, naval, and aerospace vehicles as well 

as fixed structures such as buildings and bridges are subject to dynamic loads. Under 

certain situations, such as when the frequency of the vibration is close to one of the natural 

frequencies of the structure, the dynamic loads can lead to excessive displacements and 

stresses. In some structures, repetitive dynamic loads lead to fluctuating stresses which 

may cause failure due to fatigue. Therefore the study of dynamic response of structures 

is important for design. In high performance structures, which tend to be lightweight and 

flexible, the analysis of vibration is even more important since these structures are more 

susceptible to vibration. 

The purpose of this thesis is to develop new methods in solid mechanics that can be used 

for analysis of vibrations of structural systems. Here the focus is on the vibration analysis 

of the passenger car body of high-speed trains. In the course of the development of these 
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methods, it was found that vibration in high-speed trains is a complex problem with a vast 

number of phenomena that can be explored using numerical, analytical and experimental 

techniques. While this thesis is not meant to be a comprehensive study of those vibration 

phenomena, all three types of exploration techniques are used. The focii of this research 

were on three interrelated topics: the propagation of vibration energy from the wheels to the 

car body frame and its effect on fatigue reliability, the stress concentrations at the corners 

of window and door openings and the overall vibration characteristics of tubular structures. 

The HSR-350x, a highly instrumented prototype of the most recent generation of high-

speed trains in South Korea, was used as the example system for this study. Since the 

response data under test run conditions and a 650,000 degree of freedom NASTRAN model 

were provided by the Korea Railroad Research Institute, it was possible to focus on more 

fundamental issues in this research. 

In the first part of this thesis, the dynamic response of a passenger car body in a high-

speed train is examined and failure due to fatigue is investigated. The car bodies are 

lightweight structures made of aluminum. The applied cyclic loadings are due to differ-

ent sources of vibration such as rail and wheel irregularities. Since the dynamic loads have 

random fluctuations in time, random vibration techniques were used to examine the rela-

tionships between the statistical characteristics of the excitation and response. The goal of 

this study is to determine the fatigue reliability of the car body and to recommend fatigue 

test procedures. 

In the next part of the thesis, highly localized stresses near the openings in the wall 

2 
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panels for doors and windows are examined. Since these stresses can lead to fatigue fail-

ure, many studies have been performed on the stress concentrations around such geometric 

irregularities using analytical methods, numerical simulations and experiments. Herein, 

the analytical methods based on theory of elasticity are used to find the stress distribution 

around openings. These methods are relatively complicated and are applicable only for 

simple loads. To obtain these stresses using finite element analysis, fine meshes need to 

be used around each opening, making the model and analysis more complicated and com-

putationally time consuming. Therefore a more practical solution for finding the stress 

concentrations is of interest. Herein, a semi-analytical approach is proposed to incorporate 

the result of a coarse mesh finite element analysis with an analytical solution to predict the 

stress concentration around plate openings. 

In the last part of the thesis, the global characteristics of car body vibrations are ex-

amined. Since advanced car body designs for high-speed rail in Asia and Europe tend 

to have tubular frames, cylinders are used to represent the canonical shape of these de-

signs. Isotropic, orthotropic and more general anisotropic material properties are consid-

ered. A number of different shell theories based on different assumptions for the strain-

displacement relationships lead to a variety of equations of motion. In many cases, such 

as when the cylinder is free at its ends, these equations do not have a closed-form solu-

tion. Researchers have proposed several numerical and approximate analytical approaches 

to solve for the natural frequencies and mode shapes of these cylinders. Some of these 

methods use numerical analysis to solve for the equilibrium equations with the boundary 

3 
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conditions. Others use energy approaches such as the Rayleigh-Ritz method by assuming a 

specified mode shape for the cylinder. While the Rayleigh-Ritz methods are relatively sim-

ple to implement, the mode shapes in many cases only approximately satisfy the boundary 

conditions. In the last part of the thesis, a perturbation method is used to find the natural 

frequencies and mode shapes of a vibrating cylinder. The goal was to derive relatively 

simple expressions for the dispersion relation and modal properties using a small number 

of parameters. It is shown that these expressions are useful in their own right because they 

lead to enhanced insight into the characteristics of cylinder vibrations and are also useful 

for system identification. 

1.1 Road map of the dissertation 

The chapters of this dissertation are organized as follows. 

In Chapter 2, the characteristics of the response of the passenger car body is studied. 

Experimental acceleration measurements along with the results of a finite element analysis 

of the car body are used for system identification of the dynamic properties of the suspen-

sion. Using these frequency dependent properties of the suspension, the power spectral 

density of stresses in the car body is also calculated. 

Chapter 3 focuses on the study of fatigue in the car body due to the dynamic loads. The 

power spectral density of stress is used in assessing fatigue reliability. By examining the 

stress patterns in the car body due to harmonic loads, loads for full-scale fatigue tests are 

4 
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proposed. 

In Chapter 4, the stress concentrations around plate openings are studied. After a brief 

review of the method of complex variables [Muskhelishvili, 1975], some new analytical 

results are derived for finding the stress distribution around holes. Unlike previous methods, 

a least squares technique is used instead of a contour integral for satisfying the boundary 

conditions at the plate opening. It is then shown how the analytical results can be used to 

enhance the results of coarse mesh finite element analyses to estimate stress concentrations 

around rectangular openings. 

In Chapter 5, the free vibrations of cylinders is examined. The mechanics and vibration 

of cylindrical shells are briefly reviewed. A numerical method for solving the exact equa-

tions for the natural frequencies and mode shapes is also reviewed and compared with the 

energy approach for solving the free vibration problem. 

In Chapter 6, perturbation is used to find approximate analytical expressions for the 

dispersion relation between the frequency and wavelength and to develop a simple approach 

to obtain the cylinder modal properties. It is shown how the results provide insight into the 

characteristics of cylinder vibration. The results are also useful for identifying the basic 

material properties of the cylindrical shell given experimental data. 

Concluding remarks and future research directions are presented in Chapter 7. 

5 
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Propagation of vibration energy from 

the bogies to the car body frame 

2.1 Introduction 

Many researchers including T.X. Wu and D.J. Thompson [2000, 2001], Farm [2000], 

T.X. Wu and D.J. Thompson [2003], M. Heckl et al. [1996], D.J. Thompson and C.J. Jones 

[1999], I.L. Ver et al. [1976] studied different sources of noise and vibration in trains and 

investigated their effect on the comfort and reliability of the structure. Rolling, impact and 

squeal noise are different categories of noise due to rail/wheel interaction that have been 

reviewed in detail by D.J. Thompson and C.J. Jones [1999]. 

Rolling noise is due to roughness, the small scale unevenness between the rail and 

wheel, which results in high frequency vibration. If the roughness is small, the rail/wheel 
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interaction is linear which means that a linear spring can be used to model the contact 

between rail and wheel, while when the roughness is large or the car body is very light, 

nonlinear behavior must be considered [T.X. Wu and D.J. Thompson, 2000]. 

Impact noise is generated due to rail discontinuities such as joints and switches and 

wheel discontinuities such as flattened wheel segments caused by braking [I.L. Ver et al., 

1976]. The train speed is an important parameter in the latter kind of impact noise, since 

the wheel is separated from the rail at the discontinuities if the train speed is higher than 

a critical speed. Noise generation is completely different above and below this threshold 

speed. 

The stiffness of the rail is also an important parameter in impact noise generation. Re-

siliently supported rails need higher speeds to lose their contact with the wheel compared 

with rigidly supported rails, since they can easily stay in contact with the wheel. They can 

also follow the shape of the contact surface easier and therefore impose less impact forces 

with the same speed [I.L. Ver et al., 1976]. 

Another important source of vibration is due to passage over the periodically placed 

sleepers. The sleeper passing frequency is equal to fs = V/L, where V is the train speed 

and L is the sleeper distance. Farm [2000] and T.X. Wu and D.J. Thompson [2003] studied 

the effect of sleeper passing frequency on the vibrations of the passenger car. 

The wheel passing frequency fw = V/a is also another source of noise where a is the 

distance between two wheels in a bogie. 

The ride comfort of trains is also very important and it is usually affected by the above 
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sources of vibrations. Y. G. Kim et al. [2008] determined the ride comfort for the HSR350x 

high speed train. Ride comfort is evaluated considering different parameters such as train 

speed, track conditions and vibrations. 

A number of studies have also been performed on the fatigue reliability of high speed 

trains. Kim [2006] studied the fatigue strength of the bogie in tilting trains using a combi-

nation of finite element analyses and static tests. S. I. Seo et al. [2005] performed full-scale 

dynamic fatigue tests on urban transit cars and compared the results with static tests and 

finite element analyses. 

2.2 Motivation and research goal 

Fatigue in the car body is due to repeated cyclic loads. There are two main sources 

of cyclic loads on the car body. The first is due to the vibrations from the track, wheel 

and bogie. The second is due to the pressure fluctuations when the train travels through 

tunnels. The goal of this study is to determine the relationships between the first sources of 

loads and the cyclic stresses within the car body. The effect of pressure fluctuations is not 

considered in this study. 

The direct approach for evaluating fatigue loads is not economical because of the mul-

tiple, complex sources of loads and the numerous unknown locations of critical stress. In 

other words, it is too costly to test a car body for the combined vibration loads and to check 

the stresses in various locations. One of the main goals of this research is to find a systems-
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level approach for evaluating fatigue loads. The systems-level approach would combine 

information from different sources to make reliability predictions for fatigue-related safety. 

The four main sources of information for this reliability study are: 

1. Vibration data from previous high speed trains (HST). Vibration from the HSR-350x 

(a previously built HST) will be used to develop models for the vibration and load 

for the new HST. 

2. Stochastic models for the loads. Extrapolation is needed to extend the data from the 

previous HST to the higher speed of the new HST. Stochastic analysis is also needed 

to describe the randomness in the loads. 

3. Finite element model (FEM) for the car body. In the design phase, the FEM can be 

used for predicting stresses throughout the car body due to vibrations. FEM is useful 

for loads up to the mid-frequency range (100 Hz). 

4. Reliability analysis for fatigue. In usual fatigue analysis, the predicted stress cycles 

are input into a fatigue criterion to obtain a probability of fatigue failure. For the new 

HST, however, it is necessary to expand this analysis to include several sources of 

uncertainties and randomness. 

The systems-level approach would result in a comprehensive reliability analysis of fatigue 

and provide a better understanding of the behavior of the car body under vibration loads. 

However, to develop specifications, it is necessary to reduce these results of the reliability 

analysis into simple criteria. These criteria must then be checked using economical tests. 
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Hence, the second main goal of this research is to develop a testing procedure for car 

bodies for fatigue reliability. In general, it is difficult, expensive and impractical to perform 

full-scale fatigue vibration tests. With the systems-level approach, however, it is possible to 

use simplified equivalent static and harmonic tests to approximate the effects of vibration 

loads due to the motion of the bogies. 

In this chapter, a model for predicting car body stresses due to vibrations at the underly-

ing bogies is developed. The chapter begins with a review of random vibration techniques 

needed in this analysis. Then the response characteristics of the HSR-350x is studied us-

ing measured acceleration data during high-speed test runs along with a NASTRAN model 

provided by KRRI. Then using system identification techniques, the frequency dependent 

properties of suspension between the car body and bogie is determined. This model for the 

suspension is used to find the ratio of predicted car body stresses over the bogie accelera-

tion (stress transfer function). The spatial patterns of stress distribution in the car body are 

also studied. 

2.2.1 Random vibration theory: A brief review 

Let X (/.) be a random process. The collection of the different realizations of the random 

process is called an ensemble. The mean value of the the random process is: 

lix{t) = E[X{t)} 
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where E [•] is the expected value operator which is evaluated across the ensemble. The 

second moment of a random process, the auto-correlation function, is expressed as follows: 

Rxx(t,s) = E[X(t)X(s)] 

To determine the relation between two random processes, consider another random process 

Y{t). The cross-correlation between random processes X{t) and Y(t) is: 

A random process X(t) is called strictly stationary if all of its probability distribution 

functions are invariant of time. The term weakly stationary is used for the random processes 

whose first and second moments do not depend on absolute time. For a stationary process 

therefore, one can write: 

Vx(t) = Mx(* + t ) 

Rxx{t, t + t ) — E [X(t)X(t + r ) ] = Rxx(t) 

Rxv{t, t + t) — E [X(t)Y(t + r)] = Rxy(t) 

The correlation coefficient or normalized covariance between two random processes is de-

fined as: 

E[{X - yx)(Y - fJLy)} 
PXY = Uxcry 

where ax and ay are the standard deviations of random processes X and Y respectively. 

Therefore for a stationary process the cross-correlation is always bounded: 

-cfxOyPxy + HxfiY < Rxy(t) < (JxVyPxy + PxPy 
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For most random processes the correlation coefficient goes rapidly to zero as r approaches 

infinity which implies that for zero-mean random processes one can find the Fourier trans-

forms of the auto-correlation and cross-correlation functions. 

The auto-power spectral density (PSD) of a stationary random process is the Fourier 

transform of the auto-correlation function: 

Since the auto-correlation function is even, the auto-PSD is real and even. It can also be 

shown that the auto-PSD is a nonnegative function. The Wiener-Khinchin theorem states 

the useful result that the area under the auto-PSD is the mean square of the random process: 

Since Rxy(t) = Ryx{—t), it can be concluded that Sxy(oj) = SYX(u>), where the 

superscript * denotes the complex conjugate. 

The power spectral density is often estimated using the Fourier transform X(u) of the 

random process x(t) as follows: 

The cross-PSD of two random processes is: 

SXX(U) = ^E[\X(U)\2] 
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where T is the duration of the essentially stationary portion of the random process, and the 

random process is windowed with respect to this duration (and additional scale factors are 

used in approximating the Fourier transform according to the type of window used). 

2.2.1.1 Time domain random vibrations 

Figure 2.1: The use of impulse response function for finding the response due to a general 

load (after Clough and Penzien [1993]). 

It is usual to study the dynamic characteristics of a system by examining its response 

due to an impulsive load. This load can be theoretically represented by the Dirac delta 

/ ( o t 

A t ) 

dr 
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function: 

f(t) = I5(t) 

where I is a constant representing the magnitude of impulse. The time integral of the force 

is simply: 

/

oc 

f(t)dt =1 •oo 

The response of an oscillator due to a unit impulse I = 1 at t = 0 is called the impulse 

response function h(t) and can be evaluated by solving the following equation of motion: 

mh(t) + ch{t) + kh(t) = 5{t) 

where m, c and k are the mass, damping and stiffness of the oscillator. Since the impulse 

has a short duration, for t > 0 the oscillator is under free vibration and the equations of 

motion can be written in homogenous form: 

mh(t) + ch(t) + kh{t) = 0 

Using Newton's second law, the change of the momentum due to the impulse load is 

m A v — 1 = 1. Since the mass is initially at rest the velocity after the impulse would 

be v = 1/m. The free vibration response of the oscillator with zero initial displacement 

and initial velocity of vq = 1/m is: 

h(t) = — sin (wdt) 

where ui is the undamped natural frequency of the oscillator, £ = c/2mw2 is the damping 

ratio and = u ^ / l — £2 is the damped natural frequency. 
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If the system is linear, a general loading can be expressed as the superposition of im-

pulse loads of different magnitudes / ( r ) d r at different times r as shown in Figure 2.1. The 

response of an oscillator to general loads can then be evaluated using the impulse response 

function: 

y(t)= f h(t-T)f(r)dr 
J — C O 

2.2.1.2 Frequency domain random vibrations 

Another approach to find the characteristics of a linear dynamic system is to study the 

response to a unit harmonic input: 

f(t) = eibJt 

The steady state response of the oscillator is: 

y(t) = H{uj)eiwt 

where H(ui) is the frequency response function. Substituting y(t) in the equations of mo-

tion one can write: 

(—raw2 + icui + k) H(u>) = 1 

Dividing the equation by mass m, the frequency response function can be expressed as: 

H(uj) = ^—— r-

v y -u2 + 2 + ul 

where uin is the natural frequency of the oscillator. 

The relation between input and response can be expressed in terms of the frequency 
response function. Let F(u>) be the Fourier transform of the input excitation and let X{uj) 
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and Y(uj) be the responses in the frequency domain such that: 

X(LJ) = HX(LU)F(UJ) 

Y(UJ) = HY(U)F{U) 

The mean value and auto-power spectral density of the response can be expressed as: 

HX M = HX(U)HF{UI) 

SXX(u) = \Hx(LU)\2SFF(U>) 

The cross-power spectral density between the input excitation and response can be written 

as: 

Finally the cross-power spectral density between two responses X(oj) and Y(ur) is: 

2.2.1.3 Relation between the impulse response and frequency re-

sponse function 

Since the response characteristics of an oscillator can either be represented by the im-

pulse response function h(t) or the frequency response function H(uj), it is useful to deter-

mined their relationship. Let Y(uj) be the Fourier transform of the response y(t): 

SXF(U) = HX(UJ)SFF(U) (2.1) 

SXY(U) = HX(U)H;(LO)SFF(cu) 
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Writing the response y(t) in term of the impulse response function: 

y { u ) = h r U-mnt ~ e)d°)e 

and changing the variable t' = t — 9 one can rewrite the above equation as: 

y{u) = ~ r h(o) fit'y-^'+^di) do 

Y(u) = h(0)e-™ed0"j J™ f(t')e~iut'dt'^j 

Y{uj) = F(lj) ( F h(6)e~iued6 
/ / * ' 

\J —oo 

Comparing the above with Y{ui) — H(u>)F(lo) it is concluded that [Newland, 1995]: 

As indicated in section 2.2 this study focuses on two main goals: the analysis of fatigue 

reliability and the development of testing procedures. To achieve these goals, it is necessary 

to build a model for predicting stresses. Here a model is developed using two sources of 

information: the measured accelerations of the car body and bogies and the finite element 

model of the car body. These are integrated into a stress transfer function, which is the 

fundamental function that relates the bogie acceleration to car body stresses. 

2.3 Stress prediction model 
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2.3.1 Response characteristics 

In this section the characteristics of the response of the high speed train is determined 

by studying the relationship between the bogie and car body responses. 

Figure 2.2: Time dependent PSD of the axle.(Time in seconds, frequency in Hz.) 

2.3.1.1 Review of previous studies 

On the HSR-350x, accelerometers were installed in the car body, bogies and axles. The 

analysis of the recorded accelerations was documented in another study [Igusa, 2008], In 
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iwtl: Boyio(V) BM3-1 

wheel bridge sleeper 

resonances 

Figure 2.3: Time dependent PSD of the bogie.(Time in seconds, frequency in Hz.) 

that study, the short-term Fourier transform (STFT) was used to obtain the time-varying 

Fourier transform of the response. Much of the vibration load is dependent on the velocity 

of the train, and since a simple PSD will not show this velocity-dependent behavior, the 

time-dependent PSD was used. The time dependent PSD of the axle bogie and car body 

are shown in Figures 2.2, 2.3 and 2.4 respectively. 

It is well known that vehicles with wheels such as trains have vibration loads with fre-

quencies that are proportional to the velocity. These are known as the kinematic vibration 

loads. The kinematic vibrations are related to a length scale, such as the spacing of the 
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wheel bridge sleeper 

resonances 

Figure 2.4: Time dependent PSD of the car body.(Time in seconds, frequency in Hz.) 

sleepers or the circumference of the wheel. The fundamental frequency of the kinematic 

vibration is obtained by the simple formula: 

fundamental kinematic frequency = 
train speed 
length scale 

(2.2) 

Therefore, for each kinematic source for vibration, there will be a length scale and a cor-

responding fundamental kinematic frequency. This means that the response due to this 

kinematic source has a frequency proportional to the train speed. In the time-dependent 

PSD, this response appears as a curve with the same shape as the plot of the train speed 
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(vertical axis) with respect to time (horizontal axis). The kinematic excitations have sharp 

peaks while the resonances are broad peaks. If the kinematic source such as the sleepers 

causes a nearly sinusoidal response, then most of the response is at the fundamental kine-

matic frequency. If the kinematic source such as the wheels has a more irregular response, 

then there will be responses at higher multiples of the fundamental kinematic frequency 

due to the harmonic nature of the vibrations: 

. . train speed 
higher kinematic frequencies = i x — (2.3) 

length scale 

where i — 2,3,.... In Figures 2.2, 2.3 and 2.4 one can see three main sources of kinematic 

vibrations: 

• Sleepers: The vertical profile of the rail has peaks at the sleepers and valleys between 

the sleepers. This causes a nearly sinusoidal acceleration of the axle. When the train 

is traveling at approximately 300 km/hr = 83 km/s, the sleeper traveling frequency is 

approximately 83 km/s / 0.6 m = 138 Hz. The response due to the sleeper is indicated 

by the fairly prominent curve in Figures 2.2 and 2.3. This curve has the same shape 

as the train speed plotted versus time. 

• Wheel irregularities: The wheel has irregularities and flat spots due to braking and 

other routine wear. Since the response of the axle due to the rotation of the wheel 

is periodic, the PSD will have responses appearing at periodic frequency intervals as 

given by equation (2.3). The wheel circumference is approximately 2.9 m. At 300 

km/hr, the fundamental kinematic frequency due to the wheel is given by equation 
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(2.2): 83 km/s / 2.9 m = 28.6 Hz. The higher kinematic frequencies, given by equa-

tion (2.3), are 57.2, 85.9, 114.5, ... Hz. As noted earlier, all of these curves have the 

same shape as the plot of train speed versus time. The effect of wheel irregularities 

is unnoticeable in the bogie and car PSDs due to the low pass filtering effects of the 

suspension. 

• Periodic bridge irregularities: In the PSD shown in Figure 2.2, a series of closely 

spaced curves can be seen. A closer examination shows that these curves are spaced 

in the vertical frequency direction at approximately 3.1 Hz intervals when the train is 

traveling at approximately 300 km/hr. This corresponds to a length scale of approxi-

mately 25 meters which is the spacing between bridge supports. 

It is noted that the vibrations due to resonance are independent of speed and appear as 

horizontal lines in the time dependent auto-PSD plots for the bogie and car body. Some 

of the bogie resonances in Figure 2.3 are sharp, and correspond to low damping. Others 

are broad, and correspond to moderate to high damping. For the car body PSD in Figure 

2.4, most of the resonances are around 50 Hz and 75 Hz which are much fainter than the 

resonances for the bogie. 
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Figure 2.5: Auto-PSD of the bogie acceleration. 

2.3.1.2 Response characteristics at cruising speed 

Here, we determine the characteristics of the accelerations that are most relevant to the 

analysis and testing of fatigue. The basic data are the time-history accelerations: 

a(t) = car body acceleration 

cib(t) = bogie acceleration 

where we use the subscript b for bogie. In this study, we focus only on the STFT when the 

HSR-350x is traveling at its cruising speed of approximately 278 km/h. This is the speed 
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frequency (Hz) 

Figure 2.6: Auto-PSD of car body acceleration. 

that the high speed train will travel for most of its duration under commercial operation. 

The techniques explained in this chapter can be expanded to include variable speed data. 

The STFT at cruising speed is denoted as: 

A ( f ) — STFT of car body acceleration at cruising speed 

Ah(f) = STFT of bogie acceleration at cruising speed 

In order to get a smooth model for the frequency-dependent model for the suspension be-

tween the bogie and car body, it is necessary to use a smoothed power spectral density. So 
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Figure 2.7: Cross-PSD of bogie-car body acceleration. 

a frequency domain filter is performed on the absolute STFT squared of the acceleration: 

Scc(f) = 
r ' f N y 

P fNyquist 

Sbb(f)= / ' \Ab(f')\2Hfilter(f ~ f'W = 
Jo 

rfN 
Scc(f) = / 

Jo 

IMf')\ Hfuterif ~ f')df = Auto-PSD of the car body 

Auto-PSD of the bogie 

Ab( f ) A( f')Hf Mer( f ~ f'W = Cross-PSD of the bogie-car body 

where the subscript c denotes the car body. In this analysis a Gaussian filter is used: 

1 f Hfuteri,f) = TfZ 7 
\/{<tn)a filter Z a filter 
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Figure 2.8: TF, / /" , of bogie to car body accelerations. 

where the Gaussian width of the filter is a f W e r = 2.5 Hz. The result for the auto-PSD of 

the bogie is shown in Figure 2.5. The most prominent peaks in the PSDs are at: 

• 53 Hz = first group of major resonances 

• 75 Hz = second group of major resonances 

• 138 Hz = sleeper frequency at cruising speed 

The auto-PSD of the car body is shown in Figure 2.6. Here, the first peak at 53 Hz is 

reduced as compared with the auto-PSD of the bogie. This indicates that this resonance 
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may be related more to the bogie vibrations than the car body vibrations. The second peak 

at 75 Hz is still high, indicating that this resonance is related to car body vibrations. The 

vibrations at the sleeper frequency is significantly reduced, indicating that the suspension 

is effective in attenuating this high-frequency motion. The auto-PSD of the car body also 

shows a significant peak between 0 to 10 Hz. This is primarily due to the low stiffness of 

the air bag suspension. 

The cross-PSD is shown in Figure 2.7. This result shows a combination of effects 

between the bogie and car body. This figure is somewhat difficult to interpret because of 

this combination effect, but the primary purpose of the cross-PSD is to obtain the transfer 

function (TF), which is explained next. 

The acceleration TF from bogie to car body is in terms of the Fourier transform of bogie 

and car body accelerations: 

rra _ M f ) 
ab Ab(f) 

While the TF can be obtained directly from this ratio of Fourier transforms, the result tends 

to be very irregular and noisy. A statistical estimate of the transfer function can be written 

in terms of the auto-PSD of the bogie and the bogie-car body cross-PSD as explained earlier 

in equation (2.1). 

fra =
 Scb(f) 

ab Sbb(f) 

The plot of the absolute value of the estimated TF is shown in Figure 2.8. In terms of the 

structural dynamics of the bogie-car body system, the TF captures the resonance and atten-

uation effects of the suspension between the bogie and car body as well as the resonances 
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of the car body. The dynamic coupling of these resonances are important, and are discussed 

in subsection 2.3.2. 

There are a set of major peaks in the TF and one major valley: 

• 0 - 10 Hz = suspension resonance 

• 20 - 26 Hz = car body resonance 

• 40 - 58 Hz = resonances associated primarily with the bogie 

• 67 - 77 Hz = resonances associated primarily with the car body 

• 87, 98, 109, 128 Hz = additional resonances 

• 140 - 170 Hz = attenuation due to suspension 

The resonances described above were also identified in the STFT analysis in the previous 

studies on high speed train response characteristics [Igusa, 2008], The magnitude of the 

responses is in agreement with an earlier study on the ride comfort of the HST [Y. G. Kim 

et al., 2008], The attenuation is important because the frequency range covers the sleeper 

frequency at cruising speed. This explains the lack of a sleeper frequency peak in the 

auto-PSD of the car body in Figure 2.6. 

2.3.2 Analytical forms for the transfer functions 

In this section the properties of the suspension between the bogie and car body is de-

termined. To perform this analysis, it is necessary to define several TFs. The analytical 
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formulations for the TFs are in terms of the dynamic properties of the suspension and the 

car body dynamic properties. 

2.3.2.1 System dynamic properties 

The suspension is described by its stiffness. The car body is described by the modal 

properties: 

Oj (x) jth mode shape, as a function of location x 

f j jth natural frequency 

£ damping ratio 

It is assumed that the modal masses are unity so that the units for the mode shapes are 

1 /y/mass . To obtain relatively smooth acceleration and stress transfer functions, a damp-

ing value of £ = 10% was used in the analysis. 

To begin the analysis, it is necessary to assign a temporary stiffness value k0 to the 

suspension so that FEM can be used to obtain the mode shapes. First the bogie is fixed 

when deriving the mode shapes. Later, this temporary constant stiffness is replaced with a 

frequency dependent stiffness k { f ) which more accurately models the behavior observed 

in the measured data. 

For the HSR-350x car body, a 109,857 node 138,623 element NASTRAN FEM model 

shown in Figure 2.9 is used [Park, 2004], This NASTRAN model was translated to 

ABAQUS 6.7 [Abaqus documentation, 2007] using the NASTRAN-to-ABAQUS trans-
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lation utility. Since this model was only for the car body, vertical springs were used at each 

bogie connection as shown in Figure 2.10. The initial temporary stiffness k0 was assigned 

at these supports such that the fundamental mode (assuming the car body is a rigid mass at 

low frequencies) is 1 Hz. A modal analysis is performed to determine the natural frequen-

cies and mode shapes of the body. Figure 2.10 only shows half of the car since symmetry 

can be used to represent the motion of the other half of the car. 

As expected, the first three natural frequencies of the system are close to 1 Hz. In these 

modes, the car body is moving almost as a rigid body with nearly all of the strain energy 

localized at the two support springs. The next two natural frequencies are at 11.35 and 

11.73 Hz. The mode shapes show highly localized deformation at the two ends of the car 

body. This is illustrated in Figure 2.11 for mode shape 4. The properties of the first set of 

modes are shown in Table 2.1 and Figures 2.11 - 2.16. 

In the modal analysis, 110 modes were computed, with natural frequencies up to 200 

Hz. It is noted that the units of the mode shapes is ton~1//2 since metric tons are used in the 

FEM model. 

2.3.2.2 Derivation of TFs 

In this section the transfer functions (TFs) are derived. These TFs are needed later for 

fatigue stress analysis. We introduce the following notation: 

• A, As, Ab : acceleration at the car body, support above the suspension, and bogie 

• Ds, Db : displacement at the support above the suspension and bogie 
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Table 2.1: Description of modes 

mode number frequency description 

4 11.35 local mode near door 

5 11.73 local mode far from door 

6 21.12 global mode 

7 23.94 global mode 

8 26.65 global mode 

9 33.50 global mode 

10 38.53 global mode 

Table 2.2: Description of transfer functions 

TF unit input acceleration output suspension 

H$(x) force at the support car body, location x stiffness A;0 

H'FA(X) force at the support car body, location x no stiffness 

Hi(x) acceleration at the support car body, location x -

Ht(x) acceleration at the bogie car body, location x stiffness k 
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Figure 2.10: FEM model and support configuration for determining modal properties. 

• F : force at the support 

• x : location on car body for determining the acceleration 

• xs : support location on the car body 

The locations of the accelerations are shown in Figure 2.17. The force F is positive if the 

support spring is in compression so that it is in the upward direction when acting on the car 

body. Using this notation, the TFs of interest are summarized Table 2.2. 
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Figure 2.11: Mode shape 4 (11.35 Hz) illustrating a local displacement pattern. 

It is also noted that in the frequency domain the relation between the displacement and 

acceleration is as follows: 

As = ~UJ2DS 

Ab = -cj2Db 

where u = 2itf is the circular frequency. 

The fundamental TF is between the support force F and car body acceleration A. This 

TF can be computed directly from the finite element model using the mode shapes <f>j (x) 
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Figure 2.12: Mode shape 6 (21.12 Hz) illustrating a simple breathing mode displacement 

pattern. 

and natural frequencies j) : 

H f W - f - J ^ j j p , 2 l c J j f
 ( 2 4 ) 

The unit is 1 /m.ass, which for the FEM model is 1/ton. In the above expression it can 

be seen that the denominator becomes small when the excitation frequency / approaches 

a natural frequency f j of the system. Hence, in typical TFs, there are well-defined peaks 

at each natural frequency. For the HSR-350x, however, there are a very large number of 
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Figure 2.13: Mode shape 7 (23.94 Hz) illustrating a more complex breathing mode dis-

placement pattern. 

modes at very closely spaced natural frequencies. 

In Figure 2.18(a) the fundamental TF for support motion at both ends of the car body 

is plotted. The natural frequencies are shown as circles at the horizontal axis of Figure 

2.18. There will not be a peak at each natural frequency because for most of the modes 

j , either 4>j(x) or 4>j(xs) is small. To show this, the amplitudes 4>j{xs) and <t>j{x) of the 

mode shapes is shown at the support (near the door) and in the middle of the car body 

floor in Figures 2.18(b) and (c). It can be seen that only a small subset of the modes have 
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Figure 2.14: Mode shape 8 (26.65 Hz) global mode 

significantly non-zero mode shapes at these two locations. In Figure 2.18(d) we show the 

product of mode shapes, <f)j(x)4>j{xs), which appears in the numerator of equation (2.4). 

At low frequencies, below 50 Hz, it can be seen that when this product is large, there 

will be a peak at the TF as shown by comparing Figures 2.18(a) and (d) in this frequency 

range. At higher frequencies, some of the modes with closely spaced natural frequencies 

have a product of mode shapes with fluctuating signs. Such fluctuating signs leads to a 

cancelation effect in equation (2.4). This can be seen by comparing Figures 2.18(a) and (d) 

in the frequency range of approximately 60 to 90 Hz, where the product of mode shapes is 
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HHP1 

Figure 2.15: Mode shape 9 (33.50 Hz) global mode 

small and fluctuating above and below zero and in the frequency range of 175 to 190 Hz 

where the product of mode shapes is sometimes relatively large, but the sign is fluctuating. 

From this fundamental TF for support force F to car body acceleration A, one can 

construct the TF H^(x) between support acceleration As and A 

A = A_ = A[F_ = H$(x) 
As AJF H$(xs) 

= = ^ = T T ^ T (2.5) 

This non-dimensional TF is shown in Figure 2.19 for the right bogie near the door. The 

large peak slightly below 25 Hz corresponds to the seventh mode shape with natural fre-
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Figure 2.16: Mode shape 10 (38.53 Hz) global mode 

quency of 23.94 Hz shown in Figure 2.13. There are other groups of resonances that con-

tribute to peaks near 110 and 150 Hz. 

One can also construct the TF H'p{x) between the support force F and car body accel-

eration A when the support stiffness k0 is removed. The following relationship can be used 

between the forces with and without the support stiffness: 

force with no support stiffness = (force with support stiffness k0) — (displacement x £;n) 

= F - Dako = F + ^k0 
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Then the TF H#{x) is 

tt' a A A ± H$(x) Wt ' ~~ _ --F force with no support stiffness F + l + ^^r l + xs 

In obtaining the mode shapes, it was assumed that the bogies are fixed. In this stage of the 

analysis, the TFs are reexamined without this assumption, where bogie motion is allowed 

at one end. The other bogie is fixed with the spring support of stiffness k0 as shown in 

Figure 2.17. (Later, superposition is readily applied to consider simultaneous motion at 

both bogies.) The goal is to find the acceleration A of the car body due to acceleration 

Ab at the moving bogie. First, the force F in the suspension is obtained in terms of the 

accelerations Ab and As at the bogie and suspension: 

4b -F = k(Db- Ds) = k-
—up1 

The ratio of the bogie and car body accelerations is the TF H%b — A/Ab. One can rewrite 

the car body acceleration A in terms of the bogie acceleration Ab by using the preceding 

expression for the force: 

A = HpF = H / { x ] f F 1 + (xs) -a;2 

Next, the TF in equation (2.5) is used to rewrite the support acceleration Aa in terms 

of the car acceleration A: 

r H$(x) A= - 2 

1 + 
A b -

HP(xs) . 
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The terms in this equation can be rearranged to combine the coefficients of A : 

A 1 + = A 1 + 1 + ^H£(xs) 
= A i+ 

1 + %H£(Xs) 

A 

Now the desired TF H^ of the bogie to car body accelerations can be determined by 

rewriting the preceding equation in terms of the ratio AjAb as: 

Hi =4- = 
kH$ (x) 

Ah 1 + >^H$(xs) + (k - ko) (x8) 
(2.6) 

2.3.2.3 Frequency-dependent support stiffness 

As explained in the preceding section, from the measured data, one can derive an esti-

mate for the TF as shown in Figure 2.8. One can use this TF to estimate the suspension 

stiffness k by rewriting equation (2.6) and solving for k: 

_ Hjb [H$ (xs) k0 + u2] 
HihHP(xs)~H$(x) 

The result is a frequency-dependent stiffness that is in terms of the TF from the mea-

sured data and the TF Hp(x) from the finite element model. Since the analysis is in the 

frequency domain, damping is included by the imaginary part of the stiffness k. Basically, 

the damping is equal to the imaginary part of k divided by the circular frequency ui: 

c = Irn(K) 
UJ 
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bogie motion near the door 

777777 

bogie motion away from the door 

t 
A car body ^ k0 

motion 

Figure 2.17: Schematic figure showing the principal vibration motion of the system for 

bogie motion near the door and bogie motion away from the door. 

The absolute value of this stiffness is shown in Figure 2.20. In this figure, the frequency-

dependent stiffness is shown when the bogie motions are at the left or right end of the 

car body. It can be seen that both results are similar. It is noted that the stiffness ko was 

only used in the finite element model. The above estimate for the suspension stiffness is 

independent of the stiffness ko. 

A simple two-parameter model for the stiffness has been determined by KRRI re-

As support 
^ motion 

A car body 
motion support stiffness: 

k0 for modal analysis 
k for stress analysis 

+ 
I Ab bogie 

motion 

As support 
motion 4 

Ab bogie 
motion 
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searchers from a separate analysis of the bogie suspension, with parameters 

N N - s 
(2.8) -two—parameter = 245.1 

m m m m 

The absolute value of this result is also shown in Figure 2.20 in red. It can be seen that 

the two-parameter result is significantly larger than the results obtained using the combi-

nation of car body FEM analysis and car body and bogie acceleration measurements. To 

further describe this difference of results, the TF for accelerations Ab and A at the bogie 

and car body is computed by substituting the two parameter stiffness model and the FEM 

model into equation (2.6). The result is shown in Figure 2.21. As expected from the pre-

ceding comments, this TF is significantly larger than the same TF obtained purely from 

experimental measurements shown in Figure 2.8. It is not immediately clear why there is a 

difference between the two results. 

The TF in the preceding section is only used to find the relationships between forces and 

accelerations. Displacements can be obtained simply by dividing the accelerations by — ui2. 

The primary interest, however, is not on accelerations and displacements but on stresses. 

The stress TF gives the ratio of the input, which can be a force or acceleration, and the 

response, which is the stress inside the car body. For linear systems, if the displacement 

field D at every point of the car body is known, the stresses o~y can be obtained using the 

2.3.3 Car body stress transfer function 
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relation: 

Oij = HijD 

where Bij is a matrix typically computed internally by finite element software. Therefore, 

if the acceleration transfer functions such as are evaluated at every point x of the car 

body, then dividing by —ui2, and putting the results in vector form D and multiplying by 

B^ one can get the stresses ai:j. 

In practice, however, it is simpler to decouple, as much as possible, the FEM analysis 

of stresses and the evaluation of the TF. This is possible using the TF forms derived in the 

preceding section. Basically, the FEM model is used to get the stress TF from the support 

force F to the car body stresses atj. Then the preceding relations are used to extend this TF 

to obtain the stresses in terms of unit bogie accelerations. Different stress transfer functions 

of interest are defined as follows: 

TF unit input stress output suspension 

H°p(x) 

H%,(x) 

force at the support 

acceleration at the bogie 

car body, location x 

car body, location x 

stiffness k;0 

stiffness k 

The same derivation as the one in the preceding section 2.3.2.2 can be followed up to 

equation (2.6). It can be seen that the only difference is in replacing Hp(x) by Hp(x) in 

the numerator of that equation. Thus, the final result for the stress transfer function for 

acceleration at the bogie is 

u<y (r\ kHF (o 

_ W 2 + { k _ k o ) H A { X s ) w 
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Then, using standard relations in the theory of stochastic processes (or random vibrations), 

one can use the above to get the auto-PSD of the stress SAA in terms of the auto-PSD of the 

bogie acceleration SBB: 

^ a ( f ) = \l-[a
Ab(x)\2Shh(f) (2.10) 

Here, SBB is obtained from measured data, as shown in Figure 2.5, and the stress TF is 

obtained using FEM analysis and equation (2.9). 

Next, the results for the stress TF for the HSR-350x is illustrated. The fundamental 

stress TF Hp from support force F to car body stress a,j is obtained by running ABAQUS 

repeatedly using a unit amplitude support force F = sin(27r f t ) at a set of harmonic fre-

quencies / ranging from 1 to 145 Hz. More densely spaced frequencies are used at fre-

quency ranges where the auto-PSD of the car body response was large. 

The stress pattern for the longitudinal stress a n at the sleeper frequency of 138 Hz 

is shown in Figure 2.22. This is the stress TF Hp(x) evaluated at a single frequency but 

for x at all locations of the car body. The results shown in the figure is a typical stress 

pattern at high frequencies. There are significant deformations and high stresses at the end 

of the car body near the vibrating bogie support. There are also high stresses at the corners 

of the windows and around the perimeter of the door. This is due to the expected stress 

concentrations occurring near openings which is analyzed in depth in chapter 4. The stress 

patterns at other frequencies are examined in more detail in section 2.3.4. Since the stress 

CT22 (normal stress in the vertical direction in the sides of the car body) often has the highest 

value, especially around the openings, for most of the studies in this chapter, the focus is on 
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this stress. This however is subject to change if one notices significant differences between 

022 and the maximum principal stress. 

In Figure 2.23, the stress TF Hp(x) is examined at a single point and for a wide range 

of frequencies. As indicated in the figure, the stress 022 is evaluated at the corner of the 

window closest to the door. The horizontal axis shows the frequencies between 1 and 

145 Hz where Hp(x) was evaluated. The peak of the stress TF is near 25 Hz, which 

corresponds to the seventh mode shape shown in Figure 2.13. The other lower peaks in 

the stress TF correspond to other groups of modes. In section 2.3.4 the stress patterns at 

different frequencies and modes are examined in more detail. 

To compute the stress TF H"A (•'£') for acceleration at the bogie, there is no need to re-

run the FEM model in ABAQUS. Instead, it is only necessary to combine the fundamental 

stress TF Hp(x) such as that shown in Figure 2.23 with the simple analytical formula in 

equation (2.9). The resulting stress TF is shown in Figures 2.24 and 2.25 for the frequency-

dependent and two-parameter support stiffnesses. The plot in Figure 2.25 looks similar to 

the fundamental stress TF in Figure 2.23 with attenuation at higher frequencies. The atten-

uation is due to the fact that the support damping dissipates more energy at higher frequen-

cies. The plot in Figure 2.24 has more peaks. These peaks are located at approximately the 

same frequencies as the peaks of the frequency-dependent stiffness in Figure 2.20. Another 

major difference between the stress TFs in Figures 2.24 and 2.25 is that the result using the 

two-parameter stiffness is about an order of magnitude larger at frequencies below 30 Hz. 

This is because the two-parameter model is stiffer than the frequency-dependent model by 
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an order of magnitude in this low frequency range. 

The auto-PSD of the stress, computed using equation (2.10), is examined next. Figures 

2.26 and 2.27 are the auto-PSDs of the stress determined using the frequency-dependent 

and two-parameter support stiffnesses. The difference that was observed in the order of 

magnitude of the stress TFs is magnified in the auto-PSDs because the stress TFs are 

squared in equation (2.10). 

2.3.4 Stress patterns 

In this section the spatial patterns of stress in the car body are studied in the frequency 

domain. The focus is on the stress patterns resulting from harmonic forces at the supports 

and on the patterns associated with each mode of vibration. 

2.3.4.1 Harmonic stress patterns 

Figures 2.28-2.30 show the stress patterns resulting from harmonic support forces at 

53, 63 and 74.5 Hz. The lower and higher frequencies are chosen because they correspond 

to peaks in the stress TF in Figure 2.24. The middle frequency is chosen because it is close 

to a natural frequency of a mode with significant local deformation. The stress patterns at 

all three frequencies are similar, with large stresses and deformation at the end of the car 

close to the harmonic force, wave deformation and associated stresses along the roof and 

floor and concentrated wall stresses around the edges of the windows and doors. These 

wall stresses increase at locations closer to the harmonic force. 
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Comparing the plots in Figures 2.28-2.30 with the plot in Figure 2.22 for the much 

higher sleeper frequency of 138 Hz, one can also see a similar pattern. The most important 

difference between the sleeper frequency and lower frequency results is in the number of 

waves that can be seen in the roof and the floor. As expected, at higher frequencies, there 

are nearly twice as many waves: there are about 9-10 half waves in Figure 2.22 at the 

sleeper frequency as compared with approximately 4-5 half waves in Figures 2.28-2.30 at 

frequencies between 53-74.5 Hz. (Note that only the absolute value of the displacement is 

plotted in these figures, so a sinusoidal displacement pattern is plotted as a series of positive 

half-sine waves.) 

2.3.4.2 Modal stress patterns 

Next, the stress patterns for modes with natural frequencies are examined. These modes 

are in the neighborhood of the excitations frequencies used in Figures 2.22, 2.28-2.30. The 

results are shown in Figures 2.31-2.34 with natural frequencies at 49, 54, 62, 73, 75, 81, 

136, and 139 Hz. 

It can be seen that the modes fall into two groups: local deformation (62 and 81 Hz) 

and global deformation (remaining modes). For the local deformation cases, there are de-

formation primarily in the end closest to the door at 62 Hz and there are large deformations 

at both ends at 81 Hz. The stress pattern for the mode at 61 Hz in Figure 2.32 (left) is found 

in all three harmonic stress results in Figures 2.28-2.30. This is because in the harmonic 

response calculations of systems with many closely spaced natural frequencies, each har-
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monic load will excite a large number of modes. In this case, the harmonic loads at 53, 63, 

and 74.5 Hz all excited by a large number of modes around these frequencies, including 

the mode at 62 Hz. 

From the above table and in the figures, it can be seen that most of the modes create 

global stress patterns with well-defined waves. This can explain the wave-like response 

patterns at the floor and roof for the harmonic stress patterns. There is, however, one very 

important stress pattern characteristic which cannot be easily explained by the modal stress 

patterns: The modal stress patterns have relatively smooth and low stresses around the 

window and door openings. This is in sharp contrast with the harmonic stress patterns 

which always have very localized stress concentrations around these openings, particularly 

at the corners. In theory, the harmonic stress patterns are a weighted combination of modal 

stress patterns. It is not obvious how a weighted combination of smooth modal patterns 

as shown in Figures 2.31-2.34 can produce the concentrated harmonic stress patterns in 

Figures 2.22, 2.28-2.30. This behavior is important and suggests that modes cannot be 

easily used to describe stress response patterns. 

49 



www.manaraa.com

CHAPTER 3. 

Figure 2.18: (a) Fundamental TFs for force at the support to acceleration at the car body. 

Force locations: (dashed) support at left end away from the door, (solid) support at right 

end near the door, (b) Absolute value of the mode shape at the support, (c) Absolute value 

of the mode shape at the car body, (d) Product of mode shapes. 
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frequency (Hz) 

Figure 2.19: Acceleration TF from support to car body (support at right end near the door). 
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frequency (Hz) 

Figure 2.20: Frequency dependent stiffnesses. Model estimate from (solid) right bogie 

motion near the door and (dashed) left bogie motion away from the door. Simple two-

parameter model (red). 
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frequency (Hz) 

Figure 2.21: TF of bogie to car body accelerations using the two-parameter support stiff-

ness model and the FEM model for the car body. 
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Figure 2.22: Stress pattern for the transfer function for the longitudinal stress 11 at the 

sleeper frequency 138 Hz. 
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X10"4 

frequency (Hz) 

Figure 2.23: Stress transfer function for unit force at the support and stress 22 at the window 

corner as indicated in the diagram. 
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location of stress response 
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Figure 2.24: Stress transfer function for a unit acceleration at the bogie and stress at the 

window corner using the frequency-dependent suspension stiffness. 
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x 10"5 

frequency (Hz) 

Figure 2.25: Stress transfer function for unit acceleration at the bogie and stress at the 

window corner using the two-parameter suspension stiffness. 
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x 10"6 

frequency (Hz) 

Figure 2.26: Stress PSD at the window corner using the frequency-dependent suspension 

stiffness. 
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Figure 2.27: Stress PSD at the window corner using the two-parameter suspension stiffness. 
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Figure 2.28: Stress pattern for a unit 53 Hz harmonic load at the bogie support. 
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Figure 2.29: Stress pattern for a unit 63 Hz harmonic load at the bogie support. 
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Figure 2.30: Stress pattern for a unit 74.5 Hz harmonic load at the bogie support. 
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Figure 2.31: Stress patterns for the 49 and 54 Hz mode shapes. 
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Figure 2.32: Stress patterns for the 62 and 73 Hz mode shapes. 
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Figure 2.33: Stress patterns for the 75 and 81 Hz mode shapes. 
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Figure 2.34: Stress patterns for the 136 and 139 Hz mode shapes. 
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Fatigue reliability analysis of passenger 

cars in high speed trains 

As indicated, the two goals of this study are to perform a fatigue reliability analysis of 

passenger car bodies and to propose fatigue test loading procedures. The characteristics of 

the response as studied in the previous chapter is used here to achieve these goals. 

This chapter begins with a brief review of fatigue analysis. Next, the stress transfer 

function of the preceding chapter is used to develop a method for fatigue reliability analysis 

of the car body. The last part of this chapter focuses on possible test load configurations 

that would reproduce, as closely as possible, the types of stress patterns that are anticipated 

due to actual operational loads. Both static and dynamic test configurations are considered 

and a least-squares technique is used to determine the magnitude, direction and phase of 

the test loads. 
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3.1 Background 

Structures under repeated loads below the allowable load can develop cracks. Due 

to cyclic loading, these cracks can continue to grow and propagate, leading to potential 

structural failure. Therefore structures under cyclic loads are often designed for fatigue 

type failure. While there are several methods for fatigue design of structures, all of them 

require similar information. This information include: location of fatigue failure, frequency 

spectrum of the load, stresses or strains due to the load in selected critical locations, and 

the temperature and corrosive nature of the environment. The fatigue reliability predictions 

are made using one of the following methodologies: 

• S-N curves or stress life 

• hot spot stresses 

• strain life 

• fracture mechanics 

These methods are briefly reviewed in the following section. 

3.1.1 S-N 

Fatigue data is usually presented in form of S-N (Wohler) curves. An example is shown 

in Figure 3.1. This plot shows the total cycles to failure N as a function of alternating stress 
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Figure 3.1: Typical shape for the S-N curve. 

oa. Typically, the S-N curve is a linear function in log-log space, which can be expressed 

analytically as: 

Narn = A0 (3.1) 

Here m is the slope of the line in Figure 3.1 and A is a constant defining the intersection of 

the S-N curve at the stress axes. Allowable stresses for design are obtained by 95 percent 

confidence of 97.5 percent survival. There are two approaches for designing using the S-N 

curves: infinite life and safe life. Safe life designs are more common since it is economical 
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to design a structure for a finite life time rather than an infinite one. 

3.1.1.1 Safe life design 

In this approach the allowable stress is chosen such that failure occurs at a selected 

lifetime. It is noted that a safety factor must be considered for the stress, lifetime or both. 

The S-N curves can be used directly for loads with constant amplitudes while for varying 

amplitude loads cumulative failure loads such as Miner-Palmgren's law must be exploited. 

This method is explained in more detail in subsection 3.2.1.1. 

3.1.1.2 Infinite life design 

The experiments performed on loads with constant amplitude show that there exists 

an endurance limit below which there is no fatigue failure. This is shown as a horizontal 

line in the right part of Figure 3.1. The infinite life approach designs the components such 

that the stresses are below the endurance limit. This design approach is not appropriate for 

structures which are under occasional large stresses, and is usually used for the rotating 

components of machinery which are subjected to a large number of cycles of loads with 

similar magnitude. 

3.1.2 Hot Spot 

Hot spot stress is a type of stress concentration factor used in the design of welded 

structures. The hot spot stress represents a local stress increased by the geometry of the 
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joint. Two inputs are needed for the hot-spot stress analysis method: (1) the appropriate 

stress and (2) a fatigue curve for the welded construction to predict fatigue life. Hot spot 

stresses can be determined using measurements or by performing finite element analysis of 

the structure with consideration of selecting appropriate measurement locations and suffi-

ciently fine meshes. 

3.1.3 Strain-Life 

This method is an appropriate approach in studying the low cycle fatigue and when the 

local strains are considerably higher than the yield strains. This method is commonly used 

in fatigue of notched components under cyclic load where the behavior of the root of the 

notch is considered by its strain. In this method, it is assumed that there is no crack in the 

component except at the highly strained region of the notch where the crack starts because 

of the high local strain due to the external load. The behavior of the material under high 

stress is evaluated by performing the experiment on a small polished unnotched specimen 

under constant amplitude fully reversed cycles. The material behavior is then represented 

in the form of a strain - life curve which accounts for both elastic and plastic strains. 

The component of the local strains needs to be determined at the high strained regions 

and be compared to its associated value on the fatigue curve to obtain the number of cycles 

to failure. The strains are usually determined by measurements or finite element analysis. 

Since inelastic strains are needed, a nonlinear finite element analysis must be performed 

and the cyclic material properties must be used. 
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3.1.4 Fracture mechanics 

This method assumes the presence of an initial flaw which propagates under cyclic 

loads to a size that causes failure of the component. Final fracture occurs when either 

the toughness of the material is exceeded or the remaining ligament yields [Anderson, 

1994], While this method is more complicated than the above approaches, it provides more 

information about the life of the material under discontinuity and load carrying capacity of 

the structure. 

3.1.5 Selection of methods 

The method for life prediction is usually selected based on the requirements of design 

codes and specifications for the particular component or structure. However, if there is no 

requirement, the S-N approach is the easiest method to apply and is usually considered 

for most preliminary designs. In the S-N method only nominal stresses are needed which 

are easy to find, while other techniques require information which needs more advanced 

analysis and increases the time and cost of the procedure. 

Sometimes it is necessary to use more advanced methods to improve the accuracy of the 

prediction. The hot-spot stress method is useful since the high local stress due to geometry 

are calculated. If the rate of growth of the crack and residual stresses are important, fracture 

mechanics must be employed which is more complicated and expensive but provides more 

accurate and detailed information. For low-cycle fatigue, where the strains are large, the 
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strain-life is appropriate. 

3.1.6 Loads and Stresses 

As mentioned in section 3.1 one of the basic pieces of information needed for fatigue 

life prediction is the loading or stresses applied on the structure or component. In many 

cases the loads applied on the structure are random, and even if the cyclic loads are identi-

cal, the local stresses may vary due to changes in the details of the component. Therefore a 

load spectrum may be needed for such loads. 

With the development of advanced testing facilities, variable amplitude loads can be 

applied to provide a more realistic estimate of the behavior of structures under realistic 

load conditions. The variable amplitude load spectra is used for a variety of different ap-

plications such as in the design of aircraft, mechanical equipment and automotive parts. 

The order of loads in a spectrum can also affect the fatigue life, but since many structures 

are subjected to random loads, the order in the sequence of loads is not important in the 

analysis of such loads. To specify a variable amplitude load for design, the number of 

cycles at each load and the magnitude of their ranges and in some cases a non-zero mean 

load must be specified. Therefore a cycle-counting technique must be used to determine 

the above information. Specifications are typically used to determine the loads, stresses or 

strains required for fatigue analysis, and standardized load spectra. For railroad cars, load 

spectra, including the number of cycles and magnitude of the loads are typically used in 

specifications. The Association for American Railroads (AAR) [Americal Association of 
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Railroads, 1986] provides a list of components that needs to be analyzed for fatigue and 

suggests the crack initiation locations for typical details. It also provides the load spectra 

for different components of several types of standard car bodies [M. L. Sharp et al., 1996, 

R. I. Stephens et al., 2001], 

3.2 Fatigue reliability analysis of passenger car 

In this section the reliability of the car body is estimated using the concept of the stress 

TF. In section 2.3.3, the stress transfer function was estimated using the acceleration mea-

sured on the car body and bogie and the results of finite element analyses. In this section, 

this stress transfer function is used to predict the fatigue stresses. The fatigue stresses in 

the car body are then used to assess the fatigue reliability. 

3.2.1 Fatigue stress 

The stress TF (x) is used for generating stress time histories of fluctuating stress 

versus time. Stress time histories are important in fatigue analysis, particularly for stress 

evaluation algorithms such as the rainflow counting procedure that is discussed later in this 

section. To obtain a stress time history, one can simply take the Fourier transform of the 

measured bogie acceleration, Ahl multiply by the stress TF H%h(x) in equation (2.9) to get 

the Fourier transform of the stress, cr(/), then take the inverse Fourier transform to obtain 
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time (seconds) 

Figure 3.2: Simulated stress time history at the window corner due to recorded bogie mo-

tion. 

the stress in the time domain: 

* ( / ) = H°AhAb 

a ( f ) = I F F T ( a ( / ) ) 

An illustration of the stress time history is shown in Figure 3.2. This is the stress at 

the corner of one of the windows resulting from bogie accelerations at both ends. The 

result indicates that the stress time history is very irregular and random in nature. Figure 
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to 0. 
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7911 

Figure 3.3: Simulated stress time history, enlarged time scale. 

3.3 shows the same stress time history, magnified for a short duration in time. Here it can 

be seen that the stress time history has a high-frequency fluctuation of approximately 70 

Hz with varying amplitude. This high frequency response is superimposed on top of a 

lower frequency fluctuation of approximately 7 Hz. These two predominant frequencies 

are in agreement with the auto-PSD in Figure 2.26: The peaks at 50 and 73 Hz in the PSD 

combine to produce a high-frequency fluctuation at a frequency between 50 and 73 Hz 

with time-varying amplitude and the relatively wide peak at 7 Hz corresponds to the low 
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frequency fluctuation. 

Later in this section it is shown how the time history of stress at different locations 

of the car body can be used to perform fatigue analysis and to compute a fatigue damage 

index. 

3.2.1.1 Fatigue stress life analysis review: 

a, 
</> CO 
CD 

<4—I 
C/) 

Ao- = o-max-o-

A A 
. =2 a Tim a 

V .\J \ max 
/ 
Time 

Figure 3.4: Fatigue parameter definitions. 

In this section a brief review of the fatigue analysis procedure is provided. The fatigue 

77 



www.manaraa.com

CHAPTER 3. 

parameters illustrated in Figure 3.4 are: 

a.m mean value of a stress cycle 

a m i n maximum value of a stress cycle 

<Jmax minimum value of a stress cycle 

ACT = a max — &min range of a stress cycle 

a a = 4 r amplitude of a stress cycle 

ft = £mm. r a t i 0 0f maximum to minimum stresses 

An example of the S-N curve showing the total cycles to failure N as a function of 

alternating stress oa is presented in Figure 3.1. The standard S-N curve is always evaluated 

with zero mean stress, AM = 0. This corresponds to the stress ratio R = — 1. For different 

components of structures, however, the mean stress affects fatigue life. For instance, under 

cyclic loading only the tensile stresses cause the crack to propagate. Therefore, an increase 

in the mean stress results in shorter fatigue lifetime. To account for non-zero mean stress, 

a Goodman modification is used which provides a method to combine constant-amplitude 

S-N curves with different stress ratios. To incorporate non-zero mean stresses, a modified 

S-N curve formulation can be written as: 

rn 

l - ^ r j (3.2) 

where AU is the ultimate tensile stress at failure and N is the total number of stress cycles at 

failure. For the aluminum welds used in the HSR-350x, the three parameters used to define 
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the modified S-N curve are 

AO = 6.58e13 MPa 

m = 4.32 

au = 247 MPa 

3.2.2 Rainflow counting 

When using variable amplitude loads, the number of cycles at each stress level and 

in some cases the mean stress level must be known for fatigue analysis methods men-

tioned above. Cycle counting is not obvious for loads with variable amplitudes [Tucker, 

1982]. There are different types of cycle counting techniques suggested by the ASTM stan-

dard such as level-crossing counting, peak counting, simple-range counting and rainflow 

counting. Unfortunately, these various methods of cycle counting produce different results. 

Rainflow counting is shown to be accurate for most cases and is used herein [M. L. Sharp 

et al., 1996]. 

The term rainflow refers to the concept of rain falling from the time history plot when 

the time axis is vertically oriented so that it can be visualized as a series of pagoda roofs. 

A simple schematic showing such a vertically oriented time history and simulated rain is 

shown in Figure 3.5 and is explained as follows: The positive tips are called peaks and the 

negative ones are called valleys. First, the time history is rearranged such that it starts and 
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Figure 3.5: Example of rainflow counting (after M. L. Sharp et al. [1996]) 

ends with the highest absolute value of stress in the time history block. This rearrangement 

makes all half cycles of a specific stress range pair to another half cycle with that range to 

make a full cycle. A half cycle starts at the beginning of location of start of rainflow. The 

half cycle ends when one of the following occur: 

• Flow reaches the end of the signal. 

• Starting at a peak, flow reaches a more positive peak than it is started. 

• Starting at a valley, flow reaches a more negative valley than it is started. 
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• It reaches to a rainflow from a roof above. 

An example illustrating each of the above steps in rainflow counting is shown in the left 

side of Figure 3.5. The right figure is a histogram showing the number of cycles at each 

stress range A a [M. L. Sharp et al., 1996]. 

0.03 

Figure 3.6: Rainflow counting matrix of stress amplitudes (MPa) and mean values for the 

stress (MPa) at the window corner location. 

The rainflow counting algorithm was used to analyze the stress time history in Figure 

3.2. There were a total of 2850 cycles. Figure 3.6 shows the rainflow counting matrix, 
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Figure 3.7: Histograms of alternating stress amplitudes (MPa) and mean values for the 

stress (MPa) at the window corner. 

which is the joint histogram of the raw data: 

hrainfiow{&a, = number of cycles with stress amplitude cra and mean stress arn 

This joint histogram has a standard shape showing a nearly Gaussian histogram for the 

mean stress a m at nearly zero stress amplitude, a Rayleigh histogram for the stress am-

plitude at nearly zero mean stress, and some 3D structure at low mean stress and stress 

amplitude. Figure 3.7 shows the rainflow marginal histograms of alternative and mean 
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Figure 3.8: Rainflow counting matrix of stress amplitudes (MPa) and mean values for the 

stress (MPa) at the door corner location. 

stress: 

hrainflow {(Ja) = hrainfiow (cra, am) = number of cycles with stress amplitude a, 
all values of a m 

hrainfiow(cTm) = hrainfiow(aa, am) = number of cycles with mean stress crm 
all values of tra 

These histograms have the Rayleigh and Gaussian shapes, as mentioned above. 

The rainflow matrix and histograms for another location at the door corner are shown 

in Figures 3.8 and 3.9. In this case there were 3228 cycles. The Gaussian and Rayleigh 
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Figure 3.9: Histograms of alternating stress amplitudes (MPa) and mean values for the 

stress (MPa) at the door corner. 

shapes in the joint histograms are even more clear than in the previous example in Figure 

3.6. 

3.2.3 Damage indices 

When loading produces more than one stress level, damage accumulation laws must be 

used. The damage indicators are usually taken as zero in the initial state. They are mono-
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tonically non-decreasing functions of time until failure. Their value at failure is usually 

one [M. L. Sharp et al., 1996], One of the most widely used damage accumulation rules 

is called the Palmgren-Miner linear damage rule. This rule indicates that failure occurs 

when the summation of the ratio of number of cycles of load in a stress level to number of 

cycles to failure due to the same stress level equals to one. It is very simple, and produces 

generally good estimates. Here, two ways to evaluate this damage rule is presented. The 

first is based on a discretized form of the probability distribution of stresses, represented by 

histograms such as those shown in Figures 3.6-3.9. The second approach uses a continuous 

form of the probability distributions. Both approaches are used herein. 

3.2.3.1 Discretized analysis 

The damage index D in the Palmgren-Miner rule is defined as: 

with failure occurring when D — 1. In the above, i is index corresponding to an alternating 

stress range, n, is number of cycles in the t"' stress range and N, is the number of cycles to 

failure at the ith stress range. This can be rewritten in terms of the histograms h(aa) of the 

stress amplitudes shown in Figures 3.7 and 3.9: 

where tnfetime is the lifetime service or lifetime of the system and tmeasurement is the dura-

tion of the measurements. 

(3.3) 

(3.4) 
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6 8 4 3 5 

7 

Figure 3.10: Locations of high stress responses for detailed study. 

The damage index rule can be generalized to include the mean stress: 

r wi"1 

D = f l ifetime 0) m h W 0 . ^m) 
•^O^ measurement 1 

1 3 I 

where j is the index corresponding to the mean stress am and h(cra, am) is the joint his-

togram of number of stress cycles at <ra and a m . 

The rainflow histogram shown in Figures 3.6 and 3.8 can be used for the above his-

togram by the modification of adding the mean stress due to static load (gravity load for 

the HSR-350x car body). In the analysis we used Lufctimr, = 109 seconds. 
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To illustrate this damage index, the stress time histories were computed at eight loca-

tions of the car body. These locations, indicated in Figure 3.10, are at the corners of the 

windows and door and correspond to the most highly stressed regions of the car body for 

many of the harmonic frequency loads. The stress time history in Figures 3.2 and 3.3 and 

the rainflow joint and marginal histograms shown in Figures 3.6 and 3.7 correspond to lo-

cation 5. The rainflow histograms shown in Figures 3.8 and 3.9 correspond to location 2. 

The results for the damage index for all eight locations are summarized in Figure 3.11. 

Figure 3.11(a) shows the damage indices considering the frequency-dependent support 

stiffness. The locations with the highest damage indices are at the top corners of the door. 

This is not surprising because the door is the largest opening in the car body and is relatively 

close to the support. The other two locations with the next highest damage indices are at 

two corners of the window closest to the door. This is also related to the proximity of 

these locations to the support excitation. Figure 3.11(b) shows the damage indices at the 

same locations, but using the simpler two-parameter support stiffness. The general trends 

observed in Figure 3.11(a) for the frequency-dependent stiffness can also be seen in Figure 

3.11(b). There are two significant differences between the two figures. The first is that 

the damage indices at the windows are slightly more uniform in Figure 3.11(b). The more 

significant difference is that the damage indices for the two-parameter stiffness is over 

six orders of magnitude larger than that for the frequency dependent stiffness. This is 

because the differences in the relative magnitude of the stresses arising from the two types 

of support stiffnesses becomes magnified after the analysis using the Palmgren-Miner rule. 
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The analytical source of this magnification effect is the exponent of rn - 4.32 that appears 

in the rule. 
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Figure 3.11: Damage index at eight locations using (a) frequency-dependent support stiff-

ness and (b) two-parameter stiffness. Rainflow counting (dashed), simpler result using 

equation (17) (solid). 

3.2.3.2 Continuous analysis 

As stated earlier, the Palmgren-Miner rule can also be evaluated using a continuous 

representation of the probability distribution of stresses. This continuous analysis is briefly 
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reviewed herein and the results obtained using this analysis is compared with the results 

obtained using the discretized rainflow histograms. 

There are two modeling assumptions in the continuous analysis. The first is in replac-

ing the mean stress a m by constant values. For the HSR-350x, the constant value would be 

given by the stress due to gravity loads. This approximation is valid because the additional 

mean stress arising from the bogie vibrations are much smaller than the original gravity-

induced mean stresses. The second modeling assumption is in replacing the marginal his-

togram hrainfimu(<7a of the stress amplitudes shown in Figures 3.7 and 3.9 by continuous 

probability distributions. Before continuing, some more terms are defined: 

Using the theory of stochastic processes, the root mean square (RMS) of stress <7rms 

is evaluated by integrating the square of the stress time history: 

2 I V 2 
dt \ (3.5) &RMS = | J Wa (t) - <Tm] 

In addition, the average zero up-crossing rate l>{\ can be evaluated in terms of the auto-PSD 

of the stress SACT: 

v + U f s . M W ] 1 ' 2 ( 3 6 ) 

° - [ j s „ ( f ) d f \ ( } 

With this estimate for the rate of zero up-crossing, the number of lifetime cycles, nufetime, 

can be evaluated in terms of the lifetime duration tufetime '• 

^lifetime — ^Q tlifetime ( 3 * 7 ) 

Finally, the Rayleigh distribution is typically used for the probability distribution of the 
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stress amplitudes. This distribution has the exponential form 

./' ( C a ) = - J 2 - exp 
^RMS 

(3.8) 
RMS 

It is noted that the expressions in equations (3.6), (3.7) and (3.8) for the zero up-crossing 

rate, lifetime number of cycles and stress probability distribution are most accurate when 

the stress time history is a narrow-band stochastic Gaussian process. Narrow-band stochas-

tic processes are characterized by a time history that can be described by a sinusoidal-type 

oscillation with varying amplitude. The stress time history shown in Figure 3.3 has much of 

the character of a narrow-band stochastic process, but is slightly more complicated because 

of the low-frequency fluctuation. This low-frequency fluctuation, however, is relatively 

unimportant in fatigue analysis because the number of cycles of this fluctuation is an or-

der of magnitude smaller than the number of cycles in the higher frequency oscillations 

in the stress time history. The Gaussian nature of the stress time history is evident in the 

histogram of stress amplitudes shown in the right of Figure 3.7. 

Once the probability distribution f (a) of the stress amplitude is determined, then the 

Palmgren-Miner rule for continuous stress spectra can be evaluated [Li, 1999]. For the 

simpler case of zero-mean stress, this rule gives the damage index 

For the case where the mean stress crm is constant but not zero, the above equation can be 

modified as: 

(3.9) 

(3.10) 
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As described earlier, if the stress time history is a stationary narrow-band Gaussian process, 

then the results in equations (3.6), (3.7) and (3.8) can be used. When these results are 

substituted into equation (3.10), then the following analytical form for the damage index is 

obtained [Li, 1999]: 

where F is the Gamma function. This relatively simple form for the damage index can be 

evaluated using only the stress time history and its auto-PSD such as shown in Figures 2.26 

This simpler expression for the damage index is used to evaluate the fatigue reliabil-

ity at the same eight locations around the car body openings as in section 3.2.3.1. The 

results are plotted in Figure 3.11(a) and (b) using solid lines. The results for the frequency-

dependent stiffness are nearly identical to those evaluated using the rainflow histograms. 

For the two-parameter stiffness, the continuous form for the damage index is lower than 

the corresponding damage index obtained using the rainflow histograms. The main reason 

is that the stress time history for the two-parameter stiffness is relatively wide band, with 

more widely varying frequency and amplitude. This can be seen by the wider form for the 

auto-PSD in Figure 2.27. 

The damage indices for all three components of the stress at the eight locations of the 

car body as well as for the upper and lower sections of the elements are tabulated in Tables 

3.1-3.4. These results are simply more detailed forms of the results summarized in Figures 

3.11(a) and (b). The highest damage indices are at the two corners of the door. For the 

(3.11) 

and 2.27. 
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Table 3.1: Damage index using frequency-dependent stiffness and simplified equation 

( 3 . 1 1) f o r tlifetime = 1 0 9 . 

Damage Index Top of the element Bottom of the element 

location Sl l S22 S12 S l l S22 S12 

1 1.700E-14 3.900E-14 3.940E-13 2.851E-12 2.472E-10 6.170E-13 

2 1.430E-13 1.510E-13 3.050E-13 4.298E-12 6.623E-11 5.080E-13 

3 4.400E-14 1.757E-12 1.000E-14 8.000E-15 4.000E-13 1.300E-14 

4 1.300E-14 2.470E-13 2.000E-15 4.000E-15 4.210E-13 3.000E-15 

5 4.740E-13 1.604E-11 9.700E-14 1.650E-13 2.822E-12 1.220E-13 

6 1.300E-14 5.900E-13 4.000E-15 6.000E-15 3.870E-13 6.000E-15 

7 3.890E-13 3.362E-11 1.020E-13 8.900E-14 1.106E-11 8.700E-14 

8 2.000E-15 5.800E-14 0.000E+00 1.000E-15 2.390E-13 1.000E-15 

locations far from the bogie connection this damage index will decrease. 

3.3 Loads for fatigue testing 

An important goal of this research is to provide guidance for developing testing proce-

dures for car bodies for fatigue reliability. This means that it is necessary to find ways to 

load the car bodies to produce the type of stress concentrations observed in the preceding 

sections. This analysis is useful in two ways: 
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Table 3.2: Damage index using frequency-dependent stiffness and rainflow counting for 

^lifetime — 10 . 

Damage Index Top of the element Bottom of the element 

location S l l S22 S12 S l l S22 S12 

1 1.900E-14 3.400E-14 3.020E-13 2.183E-12 1.996E-10 4.680E-13 

2 1.040E-13 9.400E-14 2.690E-13 3.600E-12 5.511E-11 4.480E-13 

3 3.800E-14 1.431E-12 8.000E-15 7.000E-15 4.180E-13 1.200E-14 

4 9.000E-15 1.740E-13 1.000E-15 2.000E-15 5.670E-13 2.000E-15 

5 3.030E-13 1.018E-11 6.200E-14 1.060E-13 2.242E-12 7.700E-14 

6 1.300E-14 4.960E-13 4.000E-15 6.000E-15 4.360E-13 6.000E-15 

7 2.530E-13 2.369E-11 7.000E-14 5.800E-14 8.507E-12 5.700E-14 

8 3.000E-15 7.600E-14 0.000E+00 1.000E-15 3.490E-13 1.000E-15 
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Table 3.3: Damage index using two-parameter stiffness and simplified equation (3.11) for 

t-lifetime • 

Damage Index Top of the element Bottom of the element 

location Sl l S22 S12 Sl l S22 S12 

1 9.738E-10 1.655E-08 4.792E-08 5.605E-07 8.587E-05 7.876E-08 

2 7.441E-08 6.555E-08 1.630E-07 1.961E-06 2.704E-05 2.714E-07 

3 1.447E-09 9.981E-08 7.037E-10 6.594E-10 3.695E-07 6.498E-10 

4 4.447E-09 2.334E-07 1.474E-09 2.866E-09 8.681E-07 1.649E-09 

5 4.152E-08 1.545E-06 6.847E-09 1.062E-08 4.358E-07 9.501E-09 

6 2.955E-08 1.048E-06 5.122E-09 4.059E-09 6.154E-07 7.078E-09 

7 2.944E-08 5.587E-06 1.594E-08 1.197E-08 5.893E-06 9.9I4E-09 

8 4.600E-09 1.969E-07 8.198E-10 6.545E-10 4.348E-07 1.122E-09 

94 



www.manaraa.com

CHAPTER 3. 

Table 3.4: Damage index using two-parameter stiffness and rainflow counting for 

tlifetime • 

Damage Index Top of the element Bottom of the element 

location S l l S22 S12 S l l S22 S12 

1 2.170E-09 3.874E-08 1.112E-07 1.329E-06 2.071E-04 1.825E-07 

2 1.676E-07 1.418E-07 3.983E-07 4.607E-06 6.232E-05 6.678E-07 

3 2.919E-09 2.133E-07 1.726E-09 1.456E-09 7.917E-07 1.309E-09 

4 1.057E-08 5.331E-07 3.111E-09 5.774E-09 1.737E-06 3.783E-09 

5 1.080E-07 3.605E-06 1.637E-08 2.388E-08 9.135E-07 2.236E-08 

6 6.017E-08 2.065E-06 1.012E-08 7.761E-09 1.038E-06 1.414E-08 

7 6.954E-08 1.307E-05 3.733E-08 2.771E-08 1.372E-05 2.274E-08 

8 6.924E-09 2.884E-07 1.194E-09 9.810E-10 8.806E-07 1.713E-09 
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Figure 3.12: Test configurations for fatigue stresses. 

1. The results can be used to develop test procedures. 

2. The analysis will be useful in understanding how loads on the car body lead to stress 

concentrations. Such an understanding can be useful for designers so that they can 

develop car body designs with reduced stress concentrations. 

In this section, three possible testing configurations are considered, which are shown in 

Figure 3.12. The first configuration, shown in the top of the figure, is the natural configu-

ration where the car body is supported by springs at the ends and dynamic excitation loads 
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are applied at the support locations. This is perhaps the most obvious test configuration for 

satisfying (1) above. The main drawback of this configuration is that it is not very help-

ful in (2). It is not clear how the vibration loads at the ends leads to stress concentrations 

around the windows. The second configuration, shown in the middle of Figure 3.12, is to 

apply static loads on the floor of the car body. The idea here is to try to find static loads 

that will lead to the type of deformations and stress concentrations that are expected under 

service vibration loads. This may be the easiest test configuration for satisfying (1). Fur-

thermore, since static loads are relatively simple to understand, the results of this analysis 

may be helpful in (2). There are, however, severe limitations to this approach, as shown 

below. The third configuration, shown in the bottom of Figure 3.12, is to apply dynamic 

rather than static loads on the floor of the car body. While this type of loading is more com-

plex than the static loads, it is more realistic and is better suited for producing the stress 

concentrations expected under dynamic service loads. 

To begin the analysis, the response pattern due to a harmonic force at one of the bogies 

is found. This analysis is the same as done earlier in Figures 2.22 and 2.28-2.30. Then the 

equivalent static or dynamic forces are determined such that they produce a similar response 

pattern. To find suitable forces, a least-squares fit analysis is performed. The least-square 

fit is performed by fitting either the displacement patterns or the stress patterns. To describe 

this in detail, some additional notation is introduced: 
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x^p points on the car body for fitting displacements 

dfoid displacements at x;}] due to a harmonic load at a support 

dlHt displacements at x\:[} due to the test loads 

x{,P points on the car body for fitting stresses 

G\oad
 s t r e s s e s a t xv > due to a harmonic load at a support 

atHt stresses at :rP due to the test loads 

/(fc) test loads at locations k on the car body 

(i) 

For the displacement fitting analysis, the points x j are chosen at the locations where 

the displacements tends to be the largest for vertical support vibration loads. These points, 

shown in Figure 3.13, are distributed on the roof and floor of the car body. For the stress 

fitting analysis, the x ^ are chosen at the locations of the greatest stress concentrations. 

These points, shown in Figure 3.14, are primarily at the corners of the windows and door 

with additional points along the middle of the floor-wall and wall-roof connections. This 

leads to test procedures which reproduces responses more accurately at these critical points. 

Since the system is linear, there is a linear relation between the applied loads and the 

responses. Therefore, defining the vector notation 

dtest — 

d' 

d 

(i) 
test 

(2) 
test > f t c s t — cr. (2) 

test f = 

f( i) 

/(2) 
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Figure 3.13: Locations for matching test displacement patterns, 

with similar notation for clioad and <7ioad then one can write the matrix relations 

dtest ~ Bdf, (Ttcst = Baf 

In practice, the matrices Bd and Ba can be determined by finite element analysis simply 

by setting the force / to be the unit vectors and solving for the displacements and stresses 

for each force vector. To find the static forces, a static analysis is performed, and to find 

harmonic forces, a harmonic analysis is performed at each frequency. 
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Figure 3.14: Locations for matching test stress patterns. 

The fitting analysis was performed using a procedure similar to statistical regression. In 

the following, the details on the displacement fitting is given since the stress fitting is very 

similar. First, the sum of squared errors is evaluated to quantify the difference between the 

displacements due to the harmonic load at the support versus the displacements d[3Jst 

from the test load on the car body floor: 

P - Y^ [>•> - 2 
e<i — [ " load " t e s t sum of squared errors in displacement response 

100 



www.manaraa.com

CHAPTER 3. 

These error quantities can be rewritten in matrix form. For the displacement case one can 

write 

e(l = K o a d — G?test]T [^load — <^test] = [^load ~ B d f } T [^load — B j f ] 

~ ^Sad^load - 2<i£adBdf + fTBjBdf 

The goal in this fitting procedure is to find / which minimizes e(;. To find the minimum 

error, one can simply differentiate with respect to / and set the result to 0: 

j± = -2<%xuiBd + 2fTBjBd = 0 

The solution for the test load vector / is 

f={BjBd)~1Bjdload (3.12) 

For fitting the stresses instead of displacements, the solution for the test load vector is 

f = { B l B a ) ~ 1 B l a l o a d (3.13) 

If the load vector / is constrained such that all components f ^ are equal to a single scalar 

value f(°\ then this is the same as multiplying Bd by a unit vector 

bd = Bdl where 1 is a column vector of ones 

and it can be shown by substituting bd for Bd in the above analysis that the solution for the 

scalar value f ^ is 

(0) = ^ l o a d ( 3 1 4 ) 

rdbd 

The load vector for this constrained case is simply / = [/((T) J1"0' 
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The above procedure is illustrated for the HSR-350x at a low and relatively high har-

monic load frequencies. For the low frequency, the frequency of 2.75 Hz is chosen cor-

responding to the low-frequency peak of the PSD shown in Figure 2.26. The stress and 

displacement patterns due to this harmonic load applied to the support closest to the door 

are shown in Figure 3.15. The complexity of these response patterns is similar to that 

observed at other harmonic frequencies in section 2.3.4. 

For the first test load, we try to find the uniform static loads which comes closest to 

(i) 

matching the displacement field in Figure 3.15. To do this, the displacements d\olLd at the 

locations shown in Figure 3.14 are collected and equation (3.14) is used to find the test 

force. The result is — —0.0132 which is shown in Table 3.5 at all six force locations 

(because of the constraint). The corresponding stress and displacement fields are shown 

in Figure 3.16. It can be seen that the uniform load result produces stresses that are very 

different than the result from the harmonic load in Figure 3.15, with high stresses only in 

a small region near each of the six force locations. Next, a more general non-uniform set 

of static loads is determined to match the displacements and stresses by solving equations 

(3.12) and (3.13). The results for the forces are shown in Table 3.5 and the corresponding 

displacement and stress patterns are shown in Figures 3.17 and 3.18. Here, while there 

are still some localized stresses at each force location, the stress concentrations around the 

window can be observed. Finally, the same procedure is repeated with the same equations 

but using dynamic loads at 2.75 Hz frequency. The dynamic loads were very close to 

0° or 180° out of phase with each other, so only + / - signs are needed to describe these 
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loads. The results are shown in Table 3.5 and Figures 3.19 and 3.20. Here, the stress 

concentrations around the windows and door can be seen. When comparing the responses 

for the five different test loads in Figures 3.16-3.20 with the harmonic load response in 

(i) 

Figure 3.15, it can be seen that the dynamic load fitted to the stresses <7^ gave the closest 

stress response pattern. 

s, sit 
SNE€, ( f rac t ion • • 
(AV*j: 

+ l>427« -02 -K3.OO0C-O5 
• 2 . 5 0 0 e-DS 
+2.000 e-05 
+1.SOOC-OS 
• l.OOCe-05 +5.000C-06 
•MJ.OOOe+OO 

-l.OOtte-OS 
-1.50CKJ-05 
•2 50Je -05 

» r>09e-0S 
-3 J0lhe-05 

unit hannonic 
force F 

Figure 3.15: Stress pattern for a unit 2.75 Hz harmonic load at the bogie support. 

This test load analysis procedure was repeated for a harmonic load at 74.5 Hz, corre-

sponding to the relatively high-frequency peak of the PSD shown in Figure 2.26. The stress 
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/ uniform static load 

* if 

S, 5 1 1 SNEG, (fraction « -1.0) 
(Av«J: 75°*)) +8.9660-05 •a.ooge-os +2.S00u-05 4-2.000e-05 

t l . 5 0 0 u - 0 S ••l.COOe-05 +5.000e-Q« t-O.COOe+OO -S.000»s-06 -1.000e-05 -1.500e-05 
-2.000e-0s -2.50»e-05 -3.000e-05 -T.2S 9e-05 

^ • i l 

^SBBPi 

Figure 3.16: Stress pattern for a uniform static test load fitted to the 2.75 Hz displacements. 

and displacement patterns due to this harmonic load applied to the support closest to the 

door are shown in Figure 3.21. The main differences from the low-frequency load case 

shown in Figure 3.15 are that there are more waves in the car body floor and roof and most 

of the stresses are localized around the door and windows. It is noted that the test loads 

evaluated here are unique because they are determined using linear regression. 

The uniform static load procedure is unsatisfactory, because the load was nearly zero, 

as shown in Table 3.6 and indicated in the response plot in Figure 3.22. The difficulty here 
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Figure 3.17: Stress pattern for a non-uniform static test load fitted to the 2.75 Hz displace-

ments. 

is that the response pattern is too complex to be approximated using a six-point static load. 

The more general non-uniform static loads do not produce significantly better results, as 

shown in Figures 3.23 and 3.24. Again, it is believed that the number of static loads - six -

is too low for producing the complex response pattern at this high frequency. The results for 

the dynamic loads are far better, as shown in Figures 3.25 and 3.26. They produce the wave 

patterns in the floor and roof and the stress concentrations around the windows and door. 
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Figure 3.18: Stress pattern for a non-uniform static test load fitted to the 2.75 Hz stresses. 

As for the low frequency case, the dynamic load fitted to the stresses gave the stress 

response pattern closest to the original harmonic load response pattern in Figure 3.21. The 

results of this section are still in the preliminary stage, and there are several generalizations 

which can be explored. 

108 



www.manaraa.com

CHAPTER 5. 

dynamic load 
* j/ 

^WM 

S, S l i SNEG, (fraction - • (Avg; 75<K»1 
>3.S91u-03 
>3.000e-05 
>2.500u-05 
>2.00(Je-05 
>1-500 u-05 
> 1 000?-05 
t S . 0 0 0 u - 0 6 >o.coo«?+oo 
-5 .000e-06 

-1.50t te-05 
-2 .000e-05 
-2 .500e-05 -J.00<te-05 

Figure 3.19: Stress pattern for a dynamic test load fitted to the 2.75 Hz displacements. 

3.4 Conclusions and future study 

The acceleration response measured on the car body and bogie were used to study the 

response characteristics of the car body. These results along with a finite element model, 

were then used to determine the dynamics properties of the suspension between bogie and 

car body and stress transfer function. The stress transfer function is used to obtain the time 

history of stress at different locations of the car body. The time history is then used for 

fatigue reliability analysis. The Palmgren-Miner rule is the cumulative damage predictor 
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! S Sll 

Figure 3.20: Stress pattern for a dynamic test load fitted to the 2.75 Hz stresses. 

for the car body. The values for the damage index are very small even at the locations 

around the door and windows. One reason is that the finite element mesh is relatively coarse 

around the openings where the local stresses are high, so that the stress concentrations 

around the corners are not accurately represented. The finite element model of the car 

body is already complex and including fine meshes around all corners of all openings is not 

desirable. To overcome this problem a new numerical approach is developed in the next 

chapter to enhance the results of finite element analysis using coarse meshes and to more 
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S. S l l 
SN EG, ( f rac t ion - -
(Avq: 

+4,999 e-04 
+3.000e-Q5 
+2,500 e-05 f 2.000 e-OS 
+ i .506e-O5 
+ l .Q00e-0S 
+5.000 u*06 +0.000e+0» 
-S.OOOe-Ofi 
• l . O O t e - 9 5 
-1 .500e-05 
-2.(>OOe-OS 
-2.500O-0S 
-3 .000«-05 

unit harmonic 
force F 

Figure 3.21: Stress pattern for a unit 74.5 Hz harmonic load at the bogie support. 

accurately predict the local stresses at the corners of rectangular openings. 

In the last part of this chapter, test load configurations for full-scale fatigue tests were 

proposed. The loads were obtained by fitting the static and dynamic displacements and 

stresses at various locations of the car body. The response from equivalent loads obtained 

by matching the dynamic stresses produce the stress patterns most similar to the harmonic 

response. These test load configuration results are in the preliminary stages and they can 

be improved in several ways. For instance the regression points for matching the dynamic 
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uniform static load 

""'(jjljti 

s. Sll 
SNE<5, (fraction = -1.0) 
fAvg: 7***0 

* 3 . 0 0 C e - 0 5 
+ 2 . 5 0 0 e - 0 5 
* 2 . 0 0 0 e - 0 5 i-l.SOOe-OS +l.Q00«-0fi 
+ 5 . 0 0 0 e - 0 6 •0.000e+09 -s.oaac-06 
•1.000*3-05 -1.50<te*0S •a.ootki'os 
-2.500e-05 -S.OQOu-OS 

* 

Figure 3.22: Stress pattern for a uniform static test load fitted to the 74.5 Hz displacements. 

stresses can be moved to points that are closer to the regions of interest such as around the 

panel openings. Weighted least squares can also be used, with less weight at points away 

from the regions of interest such as at the ends of the car body. In addition both stresses 

and displacements can be fitted at the same time. 
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non-uniform static load 
s, s i t SNEG, (fraction » 

+2.617C-04 
+-3.000e-05 
•-2.500C-OS 

+ l , 50Cu-05 +l,000e-05 
+5.000C-06 <H).000e+00 
- 5 .000c -06 
-l.OOOw-OS 
-1 .500c -05 
-2 .000«-05 
-2 .500C-05 
-3 .000e-05 
-2 .976e-04 

Figure 3.23: Stress pattern for a non-uniform static test load fitted to the 74.5 Hz displace-

ments. 
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Figure 3.24: Stress pattern for a non-uniform static test load fitted to the 74.5 Hz stresses. 
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S, 5 1 1 
SNEG, ( f r a c t i o n a • 
( A w j : 75°A>) 

* - 2 . 4 3 6 « - 0 4 
4 - 3 . 0 0 0 9 - 0 5 
< •2 .500COS 
+ 2 . 0 0 0 e - 0 5 
+ 1 .50Ce-0S 
+ l . Q 0 f l e - 0 S 
+ S . 0 0 C O - 0 6 
tQ.OOOe+QO 
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Figure 3.25: Stress pattern for a dynamic test load fitted to the 74.5 Hz displacements. 
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S, S l l 
SNEG, ( f rac t ion • -
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* 8 . 4 4 3 e - 0 4 
+3.C0Ce-05 
+2.500e-05 
+2.4Q0e*O5 
+ i .5Q0u-0S 
• l.OOfle-OS 
+5.000C-06 
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Figure 3.26: Stress pattern for a dynamic test load fitted to the 74.5 Hz stresses. 
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Chapter 4 

Analysis of stresses in plates with 

rectangular openings using coarse finite 

element meshes 

In section 3.2.3 it was found that the damage indices at the corners of windows and door 

were very small. It was explained that one reason for such results is that the finite element 

model for the train had fairly coarse meshes around these openings. In many practical 

problems, especially when the structures are large and complex, it is not feasible to use fine 

meshes around all corners of all panel openings. In such cases, the finite element analysis 

results will underestimate the stresses around the corners. In this chapter an analytical 

approach is developed that can be coupled with coarse-mesh finite element analysis to 

predict the stress concentrations around rectangular openings in plates. 
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4.1 Introduction 

There are a variety of methods for evaluating stress concentrations in plates due to ge-

ometrical irregularities such as openings and cracks. In design it is common to use the 

stress concentration factor, defined as the ratio of maximum local stress to the nominal 

body or far-field stress. The stress concentration factor can be evaluated by using computa-

tional techniques, elasticity theory and experimental stress analysis such as photoelasticity. 

Peterson [1961] has provided stress concentration factors for different geometric irregular-

ities under various types of loads. Wu and Mu [2003] developed simple methods to obtain 

the stress concentration factors around circular holes located in finite anisotropic plates or 

cylinders due to in-plane loads. 

Using the edge function analysis, Hafiani and Dwyer [1999] studied the effect of the 

shape of the opening and the anisotropy of laminated composite plates under plane stress 

conditions. J. M. Henshaw et al. [1996] used finite element analysis to study the stress con-

centration in composite laminates with multiple openings under in-plane loads to demon-

strate the increase in the stress concentration at the corners of an opening when another 

opening is added in its vicinity. Using integral equations Hu et al. [1993] studied the in-

teractions between openings and cracks in different domains by breaking the problem into 

single hole and crack problems using the superposition principle. Chong and Pinter [1984] 

used finite element analysis to determine the stress concentration factor around large holes 

in tensile strips in terms of the size of the openings. Durelli et al. [1970] experimentally 

evaluated the large strains around elliptical holes and used the photoelasticity to determine 
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the stresses at those locations. 

The method of complex variables [Muskhelishvili, 1975] provides a powerful approach 

to solve elasticity problems with geometric irregularities. The method uses a complex 

representation for the displacement field and maps the physical space of the plate with 

irregularity to a unit disk via a conformal transformation. The boundary conditions are 

then expressed in the unit disk space by a contour integral. Researchers have used this 

method to solve a wide variety of elasticity problems. Savin [1961] was one of the first 

to apply this method to the plate problem. He calculated the stress concentrations around 

openings of different shapes under several types of loadings at infinity. 

More recent work on this problem using complex variables include papers by 

Ukadgaonker and Rao [2000], Xiwu et al. [1995], Wu and Cheng [1999], Chen and Hsu 

[1996], Bryukhanova [1967], Wang and Hasebe [2000], Tsukrov and Novak [2002] and 

Datsyshin and Marchenko [1985]). Ukadgaonker and Rao [2000] solved the bending prob-

lem for laminated composite plates with openings of different shapes and Xiwu et al. [1995] 

considered a finite laminate with elliptical hole under in-plane extensional and shear loads. 

Datsyshin and Marchenko [1985] solved the stress concentration around curvilinear cracks 

in a half-plane problem and satisfied the boundary conditions numerically using Gauss 

quadrature formulas. Wu and Cheng [1999] considered a circular hole in a laminated com-

posite material under extensional loading. Chen and Hsu [1996] studied the stress concen-

trations around undulating cracks located at the interface of the two materials. Two sets 

of analytic functions are used for the two materials and the unevenness of the cracks is 
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modeled using perturbation. Wang and Hasebe [2000] studied bending of a plate with an 

inclusion and a crack. The Schwarz - Christoffel transformation is used by Tiwary et al. 

[2007] to generate stress functions for heterogeneities of arbitrary shapes. Ishikawa and 

Kohno [1993] used this transformation to determine the stresses around square openings 

and inclusions for plates under in-plane extension. 

While the complex variable method is very powerful in solving a wide variety of elastic-

ity problems, it is complicated and must be reformulated for each type of far-field load. The 

other main class of methods for evaluating stress concentration factors in plates are based 

on the finite element method. A special finite element is often introduced for plane stress 

problems. For instance, Chen [1993] developed an element with a circular hole and Piltner 

[1985] introduced one with circular or elliptical holes. To avoid refining the finite element 

mesh around the holes, these special elements are used at the hole locations while regular 

elements are used at other locations. The stresses in these elements are determined using 

a numerical implementation of the aforementioned complex variable method. The stress 

concentration factors for a crack (using elliptical hole) are also determined by these special 

finite elements. To study a composite plate under in-plane extension and shear, Nishioka 

and Atluri [1982] modified the complimentary energy principle and developed a special 

plane-stress finite element for laminated composite plates with a hole. Pan et al. [2001] de-

veloped a 3D boundary element formulation for the analysis of composite laminates with 

holes. They used a special Green's function which satisfies the continuity equation between 

the laminae and the free surface on the top and bottom faces to convert the problem to a 
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two-dimensional formulation to avoid desceritization in the plate thickness direction. In an-

other study, Richards and Daniels [1986] used the conventional eight-node finite element 

to determine the displacements, and then utilized a complete quadratic function for redefin-

ing the displacement field for subsequent differentiation. The coefficients of the quadratic 

function are obtained by least squares fit of the displacements and stresses on the boundary. 

Smoothing techniques have also been used in problems where strain measurements are 

available. Rowlands et al. [1978] and Feng and Rowlands [1991] combined smoothing 

with nonlinear regression to examine a plate with a hole under in-plane extension and 

bending. The strain measurements are obtained using photomechanical techniques. The 

noise presented in the measured deformation leads to erratic derivatives of displacement 

and therefore noisy stresses and strains. The smoothing techniques provide an approach to 

calculate better estimates of these derivatives. 

This chapter focuses on stress concentrations around square holes in plates under dif-

ferent types of loads. These stresses can be determined using finite element calculations, 

if a sufficiently high density mesh is used in the vicinity of these corners. The goal here 

is to develop a method that would not require such high density meshes. This would be 

practical for complex structures, where a high density finite element mesh cannot be used 

for every rectangular opening. The key and novel aspect of this method is in extending the 

complex-variable method so that it can be effectively coupled with coarse finite element 

results to evaluate the stress concentrations around the openings. In essence, the coarse 

finite element results are used to provide moment and shear information at intermediate re-
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gions away from the openings while the extended complex variable analytical expressions 

are used to obtain the stress field immediately surrounding the plate openings. 

The method in Muskhelishvili [1975] and Savin [1961] is first briefly explained and 

used to solve for the moment distribution in a plate with a hole under bending loads. In this 

method the solution is represented in terms of analytic stress functions with unknown coef-

ficients which can be determined by solving contour integral equations used for satisfying 

the boundary conditions. As indicated above, this purely analytical approach is compli-

cated and has some limitations that prevent its practical use. In this chapter a numerical 

approach based on least squares technique is used instead of the contour integration to sat-

isfy the boundary conditions. New expressions for moment and shear in terms of analytic 

functions at the hole boundary that are needed to perform this analysis are also derived. The 

plate bending problem for constant and linear varying moments is solved using this new 

method. The results are then combined with coarse-mesh finite element analysis to predict 

the stress concentrations as follows. First, a model for the stress distribution is fitted to the 

results of a coarse-mesh finite element analysis. The fitted model is then used to evaluate 

the stress concentration factors. To examine the performance of the proposed method a 

number of examples with single and adjacent, interacting holes are solved and compared 

with the results of more accurate finite element models or purely analytical solutions for 

the single hole case. 
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Figure 4.1: Internal forces in a plate element 

4.2 Analytical results 

4.2.1 Plate bending equations 

Consider a plate element in the x, y plane as shown in Figure 4.1 (left). Let w(x, y) be 

the out-of-plane deformation of the midplane in the vertical direction. In thin-plate bending 

theory, one can use the Kirchhoff assumption, which states: 

• The deflection of the midsurface is small compared to the plate thickness. The slope 
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Figure 4.2: Conformal transformation to a unit circle 
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of the surface is much less than unity; 

• The midplane of the plate is not stretched due to bending. 

• Plane sections normal to the midsurface before bending remain plane and normal to 

the midsurface after the bending. This assumption means that the shear strains jx z , 

7yz and £2 are small and can be neglected. 

• The stress a z normal to the plane is negligible. 

Using the above assumptions, the out-of-plane deformation w(x, y) is independent of 2 

and the in-plane deformations u and v and the strains can be written in terms of w(x, y) as 

follows: 

dw dw 
u(x, y) = -t—, v{x, y) = 

_ d2w d2w ^ d2w 

T dx2 £y T dy2'^"J Tdxdy 

where r is the distance from the midplane. Using generalized Hooke's law for an isotropic 

material, the stresses in the plate can be obtained as follows: 

Et f d2w d2w 
Ox = - T : ^r I r + v^-p 

w 
(1 - u 2 ) ^ dx2 

Et fd2w 
(1 - 1/2) \dy2 

Et d2w 

+ V-

(1 + u) dxdy 

Integrating the stresses through the thickness of the plate, the resultant moments and shear 

forces per unit length shown in Figure 4.1 can be written as [Timoshenko and Woinowsky-
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Krieger, 1959]: 

^ ( d2w d2w\ „r ^ /d2w d2w\ , r ^ . d2w 
Mx = -D[— + v— ) , My =-D ( — + v— ) , Mxy = -D{ 1 - v) dx2 dy2 y \ dy2 dx2 J ' ' 3xc>y 

(4.1) 

w - V 7 2 

Nx = -D—-—, Nv = —D 
dV2w ,r dV 2 u> 

Ox ' " y ~ dy 

where D = £h 3 /12( l — is the flexural rigidity. 

The bending moments and shear forces in curvilinear coordinates n and t as shown in 

Figure 4.1 (right) are related to the those in Cartesian coordinates through the following 

transformations [Savin, 1961]: 

Mx + My = Mn + Mt 

(My - M, + 2 iM x y ) e2i>Pn = Mt- Mn + 2 iMn t ; (4.2) 

(Nx - iNv) eilfn = Nn- iNt 

where <pn is the angle between the normal to the plane and the horizontal axis x . 

The biharmonic bending equation is obtained by writing the equilibrium equations of 

moments and forces: 

d Mx dMxv „r „ + ~NX = 0; 
ox ay 

8NX dNv — - H = 0; 
dx dy 

and eliminating the shear terms [Ventsel and Krauthammer, 2001]: 

d4w ^ d4w ^ d4w _ ^ ^ 
9a;4 dx2dy2 dy4 
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It is common to solve the plate bending problem by assuming a solution for w which 

satisfies the governing equation in coordinates x, y. One usual way is to write the solution 

as Fourier series expansions with unknown coefficients. The unknown coefficients are then 

evaluated by substituting w into the biharmonic equation. Another way to solve the plate 

bending problem is the method of complex variables. In this method the x, y coordinates 

are expressed by the complex variable 2 = :/: + iy. Muskhelishvili [1975] showed that the 

general solution to the biharmonic equation in (4.4) can be expressed as: 

w(x, y) = Re (z</>p(z) + Xp(z)) (4.5) 

where 4> and x are analytic functions, i.e. they preserve angles. The subscript p indicates 

that the functions are in terms of the variable 2 in physical space. The far-field bound-

ary conditions are evaluated directly in physical space, but the boundary conditions at the 

interior of plate opening are more easily evaluated with the help of the conformal map 

explained in the next section. 

The moments and shear forces in a plate with hole can be decomposed into two com-

ponents: 

M = M° + M* (4.6) 

N = N° + N* (4.7) 

The superscripts 0 are for the solutions for a plate without the hole and the superscripts * 

are for the additional moments and shear forces that arise due to the existence of the hole. 

Hence M° and N° are the moment and shear force in an infinite unweakened plate which 
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can be easily evaluated using the basic bending equations (4.1). The components M* and 

N* of the moment and shear force account for the redistribution of stress associated with 

the existence of the hole. The conformal transformation technique explained in the next 

section is used to find these components. The analytic functions <f>p and xP can also be 

decomposed into two similar components: 

4>p(z) = 4>l(z) + d>;(z) 

Xp(Z) = X°P(z) + Xl{z) 

These functions are used in finding the two components of deformation, ui° = 

Re (z<f)p + Xp) which is the deformation for a plate without hole and w* = Re (z(f>p + x'P) 

which is the deformation component due to existence of the hole. 

Experimental and numerical investigations have shown that the stresses are locally high 

around the hole. Therefore the moment and shear components M* and V* must attenuate 

rapidly with increasing distance from the hole. This suggests that the analytic functions <t>* 

and x* have the following form [Savin, 1961]: 

r / \ Ol «2 f(z) = a0 H h - j + • • • z 

where a,j are constant coefficients. In the next subsection the conformal transformation 

properties are reviewed and the method of complex variables introduced by Muskhelishvili 

[1975] is briefly explained. 
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4.2.2 Review of analytical solution using conformal map-

ping 

4.2.2.1 Conformal transformation definition and properties 

The function that maps £ in the unit disk E to 2 in physical space S is called a 

conformal transformation if it preserves angles [Ahlfors, 1979]. The Riemman mapping 

theorem states that any simply connected region can be mapped to a unit circle by such a 

conformal map. Therefore a plate with a hole can be mapped to a unit disk as shown in 

Figure 4.2. 

The method used to transform the area of a plate with a hole to the inside of a unit circle 

using the function is explained in more detail in Savin [1961], From the theory of 

functions of complex variables it is known that the inside or outside of a unit disk £ can be 

transformed to the area of a plate with a polygon shape hole using the Schwarz-Christoffel 

integral [Savin, 1961], For the case of a rectangular hole, the conformal transformation of 

the plate to the inside of a unit circle can be determined as follows [Savin, 1961]: 

— ( 1 i a+a/- , (a-q)2
 r3 , (a2-a2)(a-a) - c + T " { + —24~<' + 80 S, 

. 5 ( a 4 + a 4 ) - 4 ( a 2 + a 2 ) - 2 / - 7 ( a 5 + a 5 ) - 5 ( a 3 + d 3 ) - 2 ( a + a ) o \ 
+ 896 ^ 2304 ^ ^ ^ 

2 1 ( a 6 + a 6 ) - 1 4 ( a 4 + a 4 ) - 5 ( a 2 + a 2 ) - 4 ^ - n \ 
+ 11264 ' ' ' J 

where a = e2k~l and a is its conjugate [Savin, 1961] and k depends on the aspect ratio of 

the rectangular hole. 
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Using the Cauchy-Riemann equations for analytic functions: 

du dv 
dx dy 

du. dv 
dy dx 
da db 
dy dx 

(4.10) 

(4.9) 

the Jacobian of the mapping can be represented as: 

du du 
dx dy 1 

3 = = T777T = 
dv dv 

y dx dy J 

where A2 = a2 + b2 is the ratio of the area of an infinitesimal element in the unit disk 

to its corresponding area in physical space and 0 is the angle of rotation of the conformal 

transformation as shown in Figure 4.2. 

4.2.2.2 Moments and shear relations using complex representation 

Using the properties of analytic functions, the derivatives with respect to x and y can 

then be written in terms of the derivatives with respect to 2: 
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Therefore the derivatives of the deformation w in (4.5) can be written as: 

~ = \ (<P{z) + zd>'(z) + Z<f/{Z) + d>(z) + 4>(z) + 

fyuj 
— = - i—i4>(z) + iz4>(z) - iz(p'(z) + i<j>(z) + iip — iip) 
ay 2 
d iv 1 

- - (2<t>'{z) + 2<P'(z) + z<f>'\z) + z<p"(z) + <0'(z) + 2)) (4.11) 
dx2 2 
d2w 1 
dy2 2 
d2w i 

- (24'{z) + 20 (z) - z<f>"(z) - *<!>"{*) ~ i>\z) - ip'{z)) 

= o - + VW -dydx 2 

where ip — dx/dz. The above relations are substituted into equations (4.1): 

Mr = -D 

My = —D 

(1 + u) (4'(z) + <f>'(z)) + {z4"(z) + z4"{z) + + V{z)) 

(1 + v) (4>'(z) + W(z)) - ^ (z4"(z) + zT(z) + -il>'(z) + W(z)) 

Mxy = - i D ^ - [z(f>"{z) - zT(z) + t/;'(z) - W{z)} (4.12) 

Nx = -2D[4"{z)+W,{z)] 

Nv = -2iD [4"{z) + r(z)j 

and are rearranged to get [Savin, 1961]: 

My - M, + 2iMxy = 2£>(1 - v) (z<p"(z) + tP'(z)); 

M, + My = —2D(l + u) (4'{z) + 

Nx - iNy = -4Df(z) 
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4.2.2.3 Unweakened plate bending 

As explained in section 4.2.1, the analytic functions (pp and xP are decomposed into two 

components, one associated with a plate without hole (unweakened plate) and the other 

corresponding to the existence of the hole. Therefore the first step in solving the bending 

of a plate with hole is to solve the problem of the unweakened plate and find the analytic 

functions cp° and x°- This can be easily performed using the bending equations in (4.1). 

In the following, bending of an unweakened plate under constant moment in Mx — M at 

far-field is reviewed and the displacements and analytic functions are determined. 

Using the bending equations in (4.1) one can obtain: 

d2w _ M 
~ ~ D{ 1 - v2) 

d2w _ vM 
~df = D{ l-i/2) 

M 
V w = 

' /)(1 I ;/) 

The shear forces and twisting moments are zero and the deformation is: 

M(x2 - vy2) 
2D(1 — v2) 

Using the relations in (4.11) the gradient of the displacement can be written as: 

V2w = ARe{4>'°{z)) (4.13) 

If we rewrite (j>° as cf>0 = P + iQ, where P and Q are real-valued functions, then since 0° 

is an analytic function, the following Cauchy- Riemann equation holds: 

,/0. OP dQ dQ .dp 

ox ox oy oy 
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It follows from equations (4.13), (4.14) and (4.1) that: 

Mx „ . , 

Since dQ/dx = dP/dy, the functions j\ (y) and /2(.t) are constants and can be set to zero. 

Therefore the analytic function 0° can be determined: 

To find the analytic function x ° , we rewrite this function as x ° — R + iS where R and S 

are real-valued functions. Since: 

R = w — + zljfl) 

then using the same procedure as for P and Q, we obtain: 

Mxy 
S = -
R=-

2(1 - v) 
M{x2 - y2) 

4 ( 1 - f ) 

and: 
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4.2.2.4 Boundary Conditions 

The moments and forces in the plane normal to the hole contour must set to zero if the 

hole is traction free: 

where Mn, Mn>t and Nn are the bending moment, twisting moment and shear force per 

unit length along the hole contour with outward normal n. It is noted that in the above 

equation Nn + <3Mnt/ds is the effective transverse force per unit length [Savin, 1961], Let 

P = J* Nnds and fn = Nn + dMnt/dsds. Then we obtain: 

where k is a real-valued integration constant. Bending moments and shear forces can be 

transformed to curvilinear coordinates: 

Mn — Mx cos2(n, x) + My sin2(n, x) + 2 M x y cos(n, x) sin(n, x) 

.fn + k = {My - Mx) cos(n, x) sin(n, x) + Mxy (cos2(n, x) - sin2(n, x)) + P 

The above equations are rearranged in the following form: 

Mn cos(n, x) — ( f n + k) sin(n, x) = Mx cos(n, x) + ( M x y — P) sin(n, x) (4.17) 

Mn sm(n, x) + (/„ + k) cos(n, x) = My sin(n, x) -f- (Mxy + P) cos(n, x) 

Mn = 0 

P + Mnt - .fn + k 
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In appendix A, it is shown that the boundary condition can be written in terms of the 

analytic functions: 

To solve the plate bending problem for plates with a hole, a conformal transformation 

z(() is used to establish a one-to-one mapping between the plate in physical space and the 

unit disk £ with coordinate £ shown in Figure 4.2. The boundary conditions at the hole can 

then be satisfied in the unit disk instead of the physical space. Using this transformation the 

deformation in equation (4.5) is written in terms of the variable £ in the unit disk. Therefore 

the moments and shear forces are all in terms of the analytic functions qf>(£) and x(C)> which 

are decomposed as: 

In the above equations, 4>°(Q and x°(C) a r e analytic functions associated with the bending 

of the unweakened plate and can be determined by substituting into 6P and %v 

Let a = eie be the value of ( — pelB at the boundary of the unit disk and let 

and — tfo be its complex conjugate. Then substituting X°(C) and X*(C) 

into the boundary condition in (4.18) one can obtain: 

zcf>' + '(/> + ruf) = 0 (4.18) 

M * ) = <!>( C) = / ( C ) + ^ ( C ) 

xP(z) = x ( C ) = x ° ( C ) + x * ( C ) 

(4.19) 

z'(a) 
r{o) = A0 + (4.20) 
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To evaluate the unknown functions 4>l(() and (), the functions and V(C) a r e first 

substituted into the boundary condition equations (4.20). Then both sides of the equation 

and its conjugate are multiplied by da/2ni(a — (), and integrated along the unit circle 7 as 

follows: 

"<i>'(o + ^ / - ^ / i / r + < 4 . 2 i ) 2?n J1 z'(a) & - C 27ri J 7 <7 - C 

*•«) + ^ I I ^ W ^ = =r /W? " ' / ? > - < « » 

27T? ,/7 r (<r) a — C 2m ,/7 CJ — C 

In the above integrals, ( is for points inside the unit circle. 

The functions <p*(() and x*(C) a r e chosen so that they vanish far from the hole. They 

are expressed as: 00 00 n o = J 2 a w o = E ft? (4-23) 
j= 1 j=Q 

These functions along with 4>° and ip° are then substituted into the boundary conditions 

(4.21) and (4.22). Solving the contour integral equations, the unknown coefficients of the 

expansions in (4.23) are obtained and the moments and shear forces in the plate are then 

determined accordingly [Savin, 1961], 

4.2.2.5 Example: bending of a plate with a square hole 

Using equation (4.8) the conformal transformation: 

maps the physical space of a plate with a square hole to a unit disk [Savin, 1961]. Note 

however that the above conformal mapping only uses two terms of the expansion in (4.8) 
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resulting in a square hole with rounded corners as shown in Figure 4.2. Substituting the 

above transformation into the equations (4.15) and (4.16) the analytic functions associated 

with the unweakened plate can be determined: 

2 

AD(1 + i/) C 6 y ' A 4D(1 — i/) C 

The contour integral equations are then solved for satisfying the boundary conditions at 

the hole boundary. In this process, the unknown coefficients of the expansion in equation 

(4.23) are found. The analytic functions are [Savin, 1961]: 

^ ^ ( l ^ W O (4.25) 

= ( 1 r 6 + 1 .4 , 2 (7 -4 ! / ) 2 

* 2D \72(1 — i/) 2(1 — v)(3 + v) ?>(1 — v)(\7 + 7v) K } 

35 + 13w 
• In C 

12(1 - i/)(3 + i/) 

Using equation (4.5) and the conformal transformation in equation (4.24), the midplane 

deformation can be determined: 

MB2 ( 35 + 13i/ . 1 1 6 
W = ~2D \ 12(1 — v)(2> + v) 2 (T+~ i / ) p 2 - 1 7 T 7 ^ C O S ( 2 ¥ ? ) + ( 4 " 2 ? ) 

2 + " Aos(4<,) + ——j——p4 cos(2<£>) - - * + 6(1 +1/)(3 + v) v ' 17 + 7v v ^ 72(3 + v) 2(1 - v) p 

— — , ^ -p2 cos(2w) + — ^ -p4 cos(4o;) ) 
2(1 — u)(17 + 7v) 2 ( l - i / ) ( 3 + vy 

where C = pellf. 

It is noted that this conformal mapping technique has some practical limitations. It is 

fairly complicated, requiring the solution of a contour integral equation. In addition, it is 
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40 mm 

6Omm , 

Figure 4.3: dimension and location of holes 

limited to relatively simple expressions for the far-field moment. In more general config-

urations such as a plate with two interacting holes as shown in Figure 4.3, the conformal 

mapping technique becomes analytically intractable. Finally, in practice it is only necessary 

to examine a few critical corners, but the purely analytical approach requires an analysis of 

the entire near-field surrounding all openings. 

4.2.3 New relations for moment and shear 

The first contribution of this study is in deriving closed-form analytical relationships 

between the moments and shear forces in the z-plane in physical space and the analytic 
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functions defined inside the unit disk. The moments and shear forces in the 2-plane are 

expressed in terms of </>, x and the variable ( inside the unit disk. These relations are needed 

to develop the regression formulation explained in subsection 4.3.1 which is subsequently 

used to couple the conformal mapping technique with finite element computations. 

The analysis begins with the relation between the derivatives in physical space and the 

unit disk. Using the Cauchy-Riemann equations in (4.9) one can write: 

d d ^d d d d 
dx du dv' dy du dv 

The second derivatives can also be written as: 

- A ( a — - - a 2 — + b2 — - 2ab-?— — — - — — 
dx2 dx \ du dv J du2 dv2 dudv dx du dx dv 

d ^ _ d _ ( b d _ a_d_\ + 2 a b d2
 + 

dy2 dy \ du dv J du2 dv2 dudy dy du dy dv 
d2 _ d_ f d _ _ bd_\ _ ab d2 _ ab&_ + 2 _ fc2 d2

 + dad_ _ dbd_ 
dydx dy \ du dv J du2 dv2 dudv dy du dy dv 

When these derivatives are substituted into the plate bending equations (4.1), the moment 

and shear forces in the physical space can be written in terms of the rectangular coordinates 
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11, v in the unit disk: 

Mxx = —D ( (a2 + "b2)-^ + (b2 + va2)^2 - 2a6(l -

+ v^L) A + _ ^ JL 
dx d y J du \ d y dx J dv J 

M„ - -D ( W + + (rtC + « » ) £ + 2 * 1 -

/vda + db\d_+(da_ d_\ ^ 
\ <9x d y J du \ d y dx J dv J 

M = _£)(i _ v ) (ab— - ab— + a2 - b2)-^— + —— - —— ) w 
xy \ du2 dv2 dudv d y du d y dv / 

N- = (2 (•£+ + + ( 4 "'I) v>) 
(2 (-I+4) +(°2+12) + 4) 

Rearranging the above equations one can write: 

Mxx + Myy = A2 (Muu + Mvv) 

Myy - Mxx + 2iMxy = A2 e~2ie [Mvv - Muu + 2iMuv) 

( BAe~ie\ 

In the above equations, it is noted that the terms Muu, Mvv, Muv, Nu and Nv have the same 

mathematical form as moments and shear forces but do not physically represent these quan-

tities. To get the moments and shear forces normal to the boundary one needs to transform 
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the above relations to curvilinear coordinates using equation (4.2): 

Mtt + Mnn = A2 (Mw + Mpp) 

(Mtt - Mnn + 2iMnt) e~2i^ = A V 2 * ( M w - Mpp + 2iMpv>) e" 2 ^ 

/ 8Ae~i6 

(Nn - iNt) e~iif,n = A3e~l0(Np - iN^e^ - 2D Aei0— 

where Mn, Mnt and A"„, are the physical bending moment, twisting moment and shear 

force per unit length along the contour with the outward normal n, and Mtt and Nt are 

the bending moment and shearing force per unit length along the tangential direction. In 

the above equation, ipn — 0 + p is the angle between the horizontal axis and normal to 

the boundary. The terms Mpp, Mpv>, Mw and Np have the same mathematical form as the 

moments and shear forces in polar coordinates p. ip in the unit disk and are therefore named 

accordingly. 

The moments and shear forces in the curvilinear coordinates in physical space can be 

written as: 

Mrm = A2 (Mpp - D( 1 - u)B.e ^ ^ e ^ ) 

Mtt = A2 (mw + D( 1 - v)Re ^qZMe'^ 

Mnt = A2 ^Mpp + D( 1 - u)Im ( ^ T ^ y ^ ) ) 
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where 

, dw dw 
dp pd(p 

The effective transverse force per unit length along the contour with normal n is: 

8Mnt Vn = Nn + ds 

u f ivz" f dq ,18A2 i , z'"z'-z"2 

In the following these moments and shear forces are written in terms of the functions cj> and 

X. The derivatives of the deformation w expressed in terms of these functions, are: 

~ = Re (Pt + t'z + x') 

= Re (-iz'4 + i(j)'z + ix') 
dv 
d2w du2 = Re (z"4> + 2z'fi + zip" + x") 

p ^ = Re(-iF4) + iz(p" + ix") ouov 

^ = Re + 2z*cf)' - z<j>" - X") 
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dw dw dw • ,_ ,— , 
— = c — + s — = Re{el*{ci>'z + z'4> + X')) 
op ou ov 
dw dw dw r . i u > , , — ... 

— = - s — + c — = - / m ( e * ^ ' z + z<f> + X ')) 
pop ou ov 

^ = Re(e2iip(4>"z + z"0 + x") + + z'W)) opz 

f)2
m .jpif _ _ 

= Re( — (<j>'z + z'd> + X') + ie2iip(^"z + z"cf> + X") ~ i(<f>'z' + z'<f>')) 
popop p 
a 2 -tip _ _ 

_ _ = + ^ + x ' ) + i e ^ ' z + z"4> + x " ) - + )) 

q=-e^(4>'z + z'(t> + x') 

da — — ieiv> 

= —ie2i(p((p"z + z"4> + x") + i f aV + - — + + X) pdp ' p 

The moments and the shear forces are then written as: 

2 ( M - DM _ ,ARe ( A - v'Aj-^A—JV Mnn = A Mpp - D( 1 - u)Re - e ^ ' z + z'<j> + x')~elv (4.29) 

Mtt = A2 ( M w + D( 1 - v)Re ( - e ^ ' z + z'tj, + x ' ) ^ ) ) (4.30) 

Mnt = A2 ( M w + D{ 1 - u)Im ( - e ^ t f z + z'cf* + x ' ) ^ ) ) (4.31) 

Nn = yl3 + 8DR.e (z'4>') Re (4.32) 

dMnin 1 dA2 '• — {z" \ 
Vn = + ^ + + 8DRe M R e + <4-33) 

/ . z" / _ _ jpi<P 
!> 1 - v)Im I elip— \-ie2lv{$"z + z"4> + X") + i{4>'z' + z'4>') - — {<t>'z + ^ + x') 

-eitp(<p'z + + + - + 

A2 pdp p z'z" 

In the above equations the terms Mpp, Mp,p, M^ and Np can also be written in terms of the 
143 



www.manaraa.com

CHAPTER 5. 

functions <j) and 

w = -D Re (e2i{p((j>"z + z"cp + x")(l - v) 

+((f)'z'+ z'<p'){ 1 + 1/)) 

w = D( 1 - u)Im (e2iip{4"z + z"(f> + *")) (4.35) 

(4.34) 

D Re (-e2ilp{(l>"z + z> + X")(l - v) 

+(4'z' + z'(f>')(l + iy)) 

Np - -D^-V2w = - W R e ( e i ¥ V ? + ~lpz")) 11 (4.37) 

(4.36) 

Previous studies of the conformal mapping techniques for plate problems did not consider 

the derivation of these equations because they are not needed in evaluating the contour 

integrals associated with the boundary conditions. In the following, an alternate approach 

to solving the boundary value problem is formulated in terms of the new analytical results 

derived in this section. 

In this section a numerical approach is developed for satisfying the boundary conditions 

without contour integration. Specifically, the form and coefficients of the analytic functions 

dy and 'tp* in equation 4.23 are determined by regression using the results of the previous 

section. The form of the analytic functions cf)° and x° for an unweakened plate provides 

guidelines on the form of the expansions for cj>* and x*- This means the covariate matrices 

4.3 Numerical Method 
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of the regression analysis for cp* and x* should include functions that are compatible with 

the form of 4>° and x°- In other words, using those covariates, one must be able to cancel 

the moments and shear forces of the Unweakened plate at the near-field due to the functions 

<f>° and x°. To choose these covariate matrices properly we need to investigate the form 

of equation (4.5) for w. A close look at this equation reveals that the power of x in z 

should be one plus the power of 4> in z. On the other hand, one notices that the conformal 

transformations for rectangular and square holes in equation (4.8) consists of odd powers 

of Q. These facts imply that if 4> can be written in terms of odd powers of £ then x can only 

include the even powers and vice versa. To clarify this even further let us consider the case 

of a plate under constant moment at far-field. The analytic functions (f>° and x ° f ° r this case 

have the following form: 

n rn 

A O ^ E l T + Z ^ - 1 (4.38) 
3=1 ^ 3 = 1 

n' f rn' 
X°(C) = E ^ + E^°C 2 f c (4.39) 

fc=1 ^ fc=l 

where for the square hole example we have n = 1, m = 2, n' = 1 and rn' = 3. The 

following expansions are then chosen for analytic functions 4>* and x*: 

m 

4>* = 52*>j<?s~1 (4-4°) 
3 = 1 

m' 

X* = b'0ln( + J 2 K ( 2 k (4-41) 
fc=i 

These equations are compatible with the analytic functions </>° and x ° since they can cancel 

the moments and shear forces of the unweakened plate at the near-field. 
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4.3.1 Imposing boundary conditions via linear regression 

To formulate the linear regression problem, analytic functions can be written in the 

following matrix form: 

4(C) = 4° + (Jib 

x ( 0 = X° + U2b (4.42) 

where b is a vector of unknown coefficients and U\ and l<r
2 are the covariate matrices cor-

responding to </>* and x*- For the square hole example, the analytical solution for bj can be 

expressed as the following vector: 

MR 
b = 2D 

where 

17+7i/ 6(3+!/) 12(1 —t/)(3+t/) 3(1—i/)(17+7i/) "2(l-i/)(3+i/) 72(1-;/) 

Ux = C1 C o o o o u* = 0 0 InC C2 C4 C6 

are the covariate matrices. The above results for b are valid only for a plate with a square 

hole under constant far-field moment M [Savin, 1961]. They were obtained through a 

contour integration approach. Below it is shown how these coefficients can be obtained 

without contour integration for more general hole geometries and loads through the use of 

the analytical results in section 4.2.3. The appropriate covariates as explained in section 4.3 

are placed in U\ and U2 matrices corresponding to 4* and X* respectively. These matrices 

are arranged inserting submatrices of zeros such that only a single vector of unknown coef-

ficients is needed for representing 4* a n d x*. For the case of constant moments at far-field 
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these matrices can be written as: 

Ui = 

s l C? cr 2m-1 

c1 c3 S n Si Ciz 2m—1 

0 ••• 0 

0 ••• 0 

V* 

0 . . . 0 InCi Ci2 

0 ••• 0 In ( n C 

a 
2 rn' 

c 2 rn' 

The rows of the above matrices are the covariates evaluated at n different locations at the 

boundary. The moments and shear forces at the boundary of the hole where p = 1 are 

evaluated in the direction normal to the boundary using equations (4.29) and (4.33). They 

are then set to zero to determine the unknown coefficients of the analytic functions. One 

can arrange the equations for the bending moment and shear forces normal to the boundary 

as follows: 

Mnn = M°nn + M* = M°n + UMnnb 

Vnn = Kl + Vr: = V* + UVnb 

where M°n and are the moment and shear components associated with the unweakened 

plate and can be evaluated by substituting the analytic functions <p° and x ° in equations 

(4.29) and (4.33). In the above equations, Um„„. and lJVn are matrices of covariates cor-

responding to the bending moment and shear forces normal to the boundary due to the 

existence of the hole. The matrices of moment covariates are constructed by arranging the 

different derivatives of components of U\ and U2 according to equations (4.29) and (4.33). 

Then the following least-squares problem is solved to determine the unknown vector b so 
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that the moments and shear forces normal to the boundary will vanish. 

m i n ( M l + UMnnbY (M°„ + UMnnb) + (V° + UVnbY (V* + UVnb) 0 

This can be rewritten as: 

mm(Unb + F°)T(Unb + F°) b (4.43) 

where: 

Un 

Um„, 

Uvn 

F° = 
M° x nn 

v° 

The unknown coefficients b are readily determined by the standard regression equation: 

4.3.1.1 Numerical results and discussion 

As mentioned in section 4.2.2.3, the first step in formulating the linear regression prob-

lem is to find the analytic functions <jp and x° associated with the unweakened infinite 

plate under the specified load. Using the basic plate bending equations in (4.1) the analytic 

functions, displacement field, and the moments and shear forces distributions can be deter-

mined. A set of results for the constant and linearly varying moment loads is summarized 

in Table 4.1. Using the results in this table and substituting the conformal transformation 

in equation (4.24) into the functions e>° and the powers of ( in cj>° and are evalu-

ated. Consequently the regression covariates are chosen to be compatible with the analytic 
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Table 4.1: The distribution of moment and shear forces, and the deformation and analytic 

functions for a plate without hole under different types of moments at far-field 

Mx My Mxy Nx Ny W <t>P Xp 

rn 0 0 0 0 rn (x-2 - vy2) rnz rnz2 

rn 0 0 0 0 2D(l — v2) (x-2 - vy2) 4/3(1+;/) 4/3(1-;/) 

0 m 0 0 0 rn (x2 
- y y 1 ) rnz 2 rnz 0 m 0 0 0 2D(1 —i/2) (x

2 
- y y 1 ) 4/3(1+1/) 4/3(1-1/) 

mx 0 umy rn 0 rn j V - uxy2^ mz2 m(l+3f)z3 
mx 0 l+u 0 2D(l-i/2) 3 - uxy2^ 8/3(1+;/) 2AD{\—v2) 

0 mx my rn 0 rn | xy2 mz2 m(3+f)z3 0 mx 1+f 1+1/ 0 2/3(l-i/2) xy2 
8/3(l+i/) 24/3(1 —f/2) 

my 0 mx 0 rn 771 | yx2 -4) imz2 zm(3+f)s3 
my 0 l+v 0 1+1/ 2/3(1—i/2) yx2 -4) 8D(l+y) 24/3(1 —;/2) 

0 my vrnx 0 rn m V - vx2yj imz2 im(l+3l/)z3 

0 my 1+f 0 1+f 2/3(1 —i/2) - vx2yj 8D(l+f) 24/3(1 —f2) 

functions (j)° and x° corresponding to the unweakened plate. For constant moment at infin-

ity, six unknown coefficients are used to determine the analytic functions ([>* and x* • For 

the case of linearly varying moment at far-field, the powers of z in 0° and x° is two and 

three. Substituting the conformal transformation for a square hole in (4.24), (f)° consists of 

even powers of ( to the maximum of six and the terms in x° have odd powers of £ to 

Therefore the following covariates are used in the case of linear far-field moments: 

Ux C2 c e o o o o o o u2 = 0 0 0 l n C C C 3 C 5 C 7 C 9 

A total of nine unknowns appear in vector b in equation (4.42). 

Finally, the linear regression formulation is used to obtain the unknown coefficients b 

by enforcing the boundary conditions. The coefficients of the analytic functions for the 

case of constant moment Mx = 1 is determined using the linear regression formulations 
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and the procedure explained in section 4.3.1. The results for D = 1, R = 35 and v = 0.3 

are shown in first column of Table 4.2. The coefficients obtained here are equal to the exact 

analytical coefficients in equation (4.25) up to sixteen significant digits. In the more general 

case of non-constant moments, it is cumbersome to obtain the exact analytical results using 

contour integration, and this analysis was not carried out herein. Instead, the proposed 

semi-analytical approach was verified by examining the magnitudes of the stresses in the 

boundary of the hole. For the case of a constant unit far-field moment Mx = 1, the ratio of 

maximum absolute value of the normal stress at the boundary to the normal stress due to 

far-field moment at the boundary is 1.5987e~14. This proves the accuracy of the analysis. 

The results for several other cases of far-field moments are summarized in Table 4.1. The 

unknown coefficients are evaluated using the linear regression formulation. In order to 

quantify the accuracy of regression analysis the ratio of the maximum normal and shear 

stresses to the maximum value of normal stresses due to far-field moment at the boundary 

is evaluated. These ratios are shown in the last two rows of Table 4.2. It can be seen 

that these ratios are in the order of computational round-off errors, which indicates that 

the proposed semi-analytical method provides the same numerical results as those obtained 

through contour integration. 

4.3.2 Enhancing coarse finite element results 

In this section it is shown how the semi-analytical method in subsection 4.3.1 can 

be coupled with coarse-mesh finite element analysis to estimate the stress concentrations 
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Table 4.2: Coefficients of the analytic functions and ratio of maximum normal stress a n and maximum shear stress r to 

maximum value of normal stress due to far-field moment a„f at the boundary of the hole. 

moments Mx = 1 My = l Mx = x Mx = y My = X My = y 

h -5.4974 5.4974 -107.0804 -78.5256 78.5256i 107.0804i 

b-2 -0.8838 -0.8838 8.3285 8.3285 8.3285% 8.3285/ 

h 859.5328 859.5328 3.2719 -3.2719 3.2719* —3.2719® 

b4 177.1379 -177.1379 0 0 0 0 

bs 132.5758 132.5758 23359.3952 13151.0619 13151.0619i 23359.3952? 

h 12.1528 -12.1528 3202.9935 1488.7153 — 1488.7153i —3202.9935i 

b7 - - 2021.1429 1170.4485 1170.44851 2021.1429* 

bs - - 0 0 0 0 

b9 - - -17.2684 29.9924 29.9924i — 17.2684* 

Vn/Pnf 1.5987e~14 1.5654e~014 4.4823e~013 1.9943e~013 1.7129e"12 1.3867e~13 

T/(?nf 2.2725e~14 4.6455e"ou 9.1417e~013 2.5624e~013 2.3750e~012 3.6947e~013 
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Figure 4.4: Distribution of moments around a corner for Mx — 1 at infinity, (a) : finite 

element results with coarse mesh, (b) : finite element results with fine mesh, (c) : exact 

analytical solution [Savin, 1961] and (d) : result using linear regression 
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(a) (b) 

Figure 4.5: Percent error of distribution of moments around a corner for MX = 1 at infinity, 

(a) : coarse-mesh finite element result, (b) : result using linear regression 

around rectangular holes. The basic idea is to use the finite element results to find the dis-

tributions of stresses in the far field where the coarse rnesh can provide results with good 

accuracy. For thin plates the relationship between stress and moment is given by: 

.A2? 

where h is the plate thickness. Once these far-field moments are determined, the moment 

distribution around the holes can be computed using the results in Table 4.1 in the following 

manner. The distribution of moments can be written as: 

MFeM = UrnMcc 

where MFEM is the vector of moments evaluated at points (xk, tjk) for k = 1,2, • • • ,n 

using a coarse-mesh finite element analysis. The matrix UM is the matrix of covariates 
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evaluated at (xk, yk) and A/ ! X j is the vector of unknown coefficients for the far-field mo-

ment. The points (xfc, yk) are chosen at points in the vicinity of, but not too close to the 

boundary because of the errors in the coarse-mesh finite element analysis. The coefficient 

vector Moo is evaluated by the following procedure. The first step is to determine the matrix 

of covariates Um. The columns of this matrix are associated with various far-field moments 

shown in Table (4.2) at points {xk, Vk)- The components of this matrix are decomposed into 

near-field and far-field. The far-field component of Urn is evaluated at points (xk, yk) by 

substituting the functions q a n d x° from Table 4.2 into the analytical relations in (4.29) -

(4.31) for constant or linear moments. The near-field component can also be evaluated by 

applying the same procedure to 4>* and x*- However, since the finite element analysis with 

coarse mesh does not provide an accurate near-field moment distribution, using the analyt-

ical relations in (4.29)-(4.31) for the near-field components results in inaccurate estimates 

for unknown far-field moments. In order to overcome this problem, the near-field com-

ponents of covariates in Um are evaluated using the results of finite element analysis with 

coarse mesh as follows. Six separate finite element analyses are performed for the constant 

and linearly varying far-field moments shown in Table 4.1. The distribution of moments 

evaluated at (xk, Vk) from each finite element analysis is the near-field component associ-

ated with the corresponding column of covariate matrix Urn. The covariate matrix is then 

obtained by adding these moments to the far-field components and the coefficient vector 

Moo is determined by the standard regression formulation as: 

Moo - {UlU m ) - x UlM F E M 
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4.3.2.1 Numerical examples 

In the following, the accuracy of the proposed semi-analytical approach is examined 

through a series of examples. The first example is a plate with a square hole under constant 

moment Mx = 1 at the far-field. Figure 4.4 shows the moment distribution around one 

corner of the square hole. The distribution of moments using coarse and fine-mesh finite 

element, and exact analytical solution are presented and compared with the proposed ap-

proach. The regression points are also shown in the figure as red dots on the coarse finite 

element results. As expected, the results from the model with the coarse mesh do not come 

close to representing the stress concentrations around the hole. This can also be observed 

in Figure 4.5 which compares the error of coarse-mesh finite element results with the pre-

dicted results using the new semi-analytical approach. The predicted moment distribution 

by the proposed approach, however, is very close to the exact results of the fine-mesh finite 

element analyses. 

For the second example, the moment per unit length is: 

Mx = 1 + 0.2 y 

As in Figure 4.4, the moments determined by the proposed approach are compared with 

exact and two different finite element analyses in Figure 4.6. The far-field moments are 

subtracted from the moment distribution so that variations in the near-field moments can 

be seen more clearly. As for the constant moment case, the moments determined from the 

proposed method are close to the exact and fine-mesh finite element results. 
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(c) (d) 

Figure 4.6: Distribution of near-field moments around a corner for Mx — 1 + 0.2?/ at 

infinity, (a) : finite element results with coarse mesh, (b) : finite element results with fine 

mesh, (c) : exact analytical solution and (d): result using linear regression 
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(C) (d) 

Figure 4.7: Distribution of moments around a corner for Mx = 1 at infinity, (a) : The 

corner that is being analyzed, (b) : finite element results with coarse mesh, (c) : finite 

element results with fine mesh, and (d) : result using linear regression 
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lunuuuiuninnniinntninuu 

Figure 4.8: Loading and boundary conditions 

A third more complex example is examined to test the versatility of the proposed analyt-

ical method. A plate with two diagonally staggered holes is considered as shown in Figure 

4.3. The moment distributions for the proposed method and the fine- and coarse-mesh fi-

nite element analyses are compared in the region shown in Figure 4.7. The distribution 

of moments is more complicated due to the interactions between the two holes. As be-

fore the coarse-mesh finite element model results miss the stress concentrations. While 

the moments evaluated using the proposed numerical approach have a spatial pattern that 

is somewhat different than the fine-mesh finite element results, the magnitudes of the mo-

ments are very similar. 

In the final pair of examples a cantilever plate with two holes is examined. The plate is 

analyzed under two different types of loads shown in Figures 4.8 and 4.10. The moment 

comparison in Figures 4.9 and 4.11 show that the proposed semi-analytical approach is 

accurate in predicting the magnitude of moments, but it is not accurate in reproducing the 

spatial patterns found by the fine-mesh finite element results. One reason is that the semi-
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Figure 4.9: Distribution of moments around a corner for loading shown in Figure 4.8, (a) 

: finite element analysis results with coarse mesh, (b): finite element analysis results with 

fine mesh and (c): result using linear regression 
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i i uniiimuiiiiumuiuniiiuiniu 

Figure 4.10: Loading and boundary conditions 

analytical formulation can model only constant and linearly varying far-field moments. 

4.4 Conclusion 

A semi-analytical method is developed to enhance the results of coarse-mesh finite ele-

ment analysis around rectangular holes. The method of complex variables [Muskhelishvili, 

1975] is used to evaluate the distribution of moments for a plate with square hole. Un-

like previous studies, in the proposed method a numerical approach based on least-squares 

technique is used instead of contour integration for satisfying the boundary condition at the 

interior of opening. The proposed method is used to solve bending of a plate with hole un-

der constant and linear far-field moments. The results are then used to enhance the results 

from a coarse-mesh finite element analysis to determine the stress concentrations around 

the openings. The proposed approach is very useful for complex and large finite element 

models where using fine meshes around each opening is not feasible. 
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Figure 4.11: Distribution of moments around a corner for loading shown in Figure 4.10, 

(a) : finite element analysis results with coarse mesh, (b) : finite element analysis results 

with fine mesh and (c) : result using linear regression 
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A series of example studies were used to assess the accuracy of the proposed approach. 

It was found that the magnitude of the stress concentrations can be determined, but the 

spatial stress distributions are less accurately reproduced. This is due to the fact that only 

linearly varying moments at the far-field were considered. Future studies will include more 

general variations of the far-field moments to make the proposed method more versatile. 

They will also include the investigations on how the interaction with the adjacent holes will 

affect the quality of results. 
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Vibration of cylindrical shells-review 

and minor extensions 

In the next generations of high-speed trains, the passenger cars are designed as essen-

tially shell-like structures to provide more strength and stiffness. The vibration behavior 

of these structures are somewhat similar to the vibrations of cylindrical shells. The stress 

distribution in the car body and a cylindrical shell in Figures 5.1 and 5.2 illustrates this 

resemblance. 

The similarity between the mode shapes of these two structures, vibrating in low and 

higher frequency, motivates the vibration study of cylindrical shells. The goal of this study 

is to understand the behavior of the shell vibrations in relation to the shell properties using 

basic principles of mechanics. 

In this chapter the free vibrations of cylinders is studied. The mechanics of compos-
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Figure 5.1: Distribution of stresses in car body and cylindrical shell for low frequency 

modes 
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Figure 5.2: Distribution of stresses in car body and cylindrical shell for high frequency 

modes 
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ite laminates and the vibrations of cylindrical shells are briefly reviewed. The numerical 

method for solving the exact equations for the natural frequencies and mode shapes is 

also reviewed and compared with the energy approach for solving the free vibration prob-

lem. The approximate energy method is extended to solve for the natural frequencies and 

mode shapes using the Fliigge instead of the Love-Timoshenko shell theory [Sharma and 

Darvizeh, 1987], In deriving the Fliigge shell equations there is no approximation other 

than Kirchhoff hypothesis which results in more accurate equilibrium equations. In Chap-

ter 6, perturbation is used to find approximate analytical expressions for the dispersion 

relation and to develop a simple approach to solve for the natural frequencies and mode 

shapes of cylinders. 

5.1 Literature review of vibrations of composite 

cylinders 

Composite materials are widely used in engineering applications because of their favor-

able properties such as high strength or stiffness to weight ratio. Cylindrical shells are also 

used in many vehicle structures and aircraft components. Therefore there is a considerable 

interest in studying the behavior of composite cylinders. 

A comprehensive review on different theories of shell vibration is summarized in the 

classical treatise by Leissa [1973]. The theories are based on Kirchhof assumptions which 

states that normals to the undeformed midsurface remain straight and normal to the de-
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formed midsurface. Different assumptions in the strain-displacement equations result 

in different shell theories such as the Fliigge, Love-Timoshenko, Sanders, and Donnell-

Mushtari theories. Each of these theories lead to their own set of equations of motion. 

A comprehensive study of other strain-displacement relationships can be found in Leissa 

[1973], There are also several methods to solve these equations. Herein, the focus is on 

semi-analytical methods such as Fourier series and energy approaches such as the Rayleigh-

Ritz technique to find the natural frequencies and mode shapes of composite cylinders. A 

review of numerical methods such as finite element and finite difference is not included 

herein. 

The vibration characteristics of cylinders was studied for limited types of boundary 

conditions such as simply supported ends [Leissa, 1973], The frequencies and mode shapes 

were evaluated using a Fourier series expansion in both longitudinal and circumferential 

directions. Forsberg [1964, 1969] solved the Fliigge shell equation for several kinds of 

boundary conditions for isotropic cylindrical shells. An eighth-order algebraic equation is 

solved iteratively to determine the natural frequencies. 

A brief review of different methods used in literature to obtain the solutions for the 

natural frequencies and mode shapes of cylindrical shells is summarized in Table 5.1. Dong 

[1968] used Fourier series expansions of the shell displacement field using the Donnell-

Mushtari shell equations. C. W. Bert et al. [1969] solved the equilibrium equations to find 

the natural frequencies of symmetrical and unsymmetrical laminates. Shao and Ma [2007] 

used the Fourier series expansions for the axial displacements. Sharma and Johns [1971] 
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and Sharma and Darvizeh [1987] used the Rayleigh-Ritz energy approach for isotropic and 

anisotropic material under several boundary conditions. Lam and Loy [1995] assumed that 

the longitudinal component of the mode shapes is a beam mode. Using the Ritz method 

on the Lagrangian function associated with the energy method, they obtained a sixth-order 

equation for determining the natural frequencies. Ip et al. [1968] used experiments as 

well as the Rayleigh-Ritz energy method by utilizing the characteristic beam functions in 

axial direction to study the vibration characteristics of cylinders. In Sharma [1974] the 

functions in longitudinal directions are assumed to be the combination of the beam mode 

shapes for clamped-free and clamped-pin beams which leads to sextic and cubic equations 

respectively. Simplifications are introduced to the problem by assuming zero hoop and 

shear strains in both strain and kinetic energy expressions, leading to quadratic and linear 

equations. This gives good results for long shells. The linear expression for the frequency 

parameter is improved in Sharma [1977] by assuming zero shear and hoop strains only in 

kinetic energy. 

The focus of this chapter is to examine the free vibration of free-free composite cylin-

drical shells. In section 5.2, the mechanics of composite laminates and in section 5.3, the 

vibration theory of cylindrical shells are briefly reviewed. It is shown how the equations 

of equilibrium and the boundary conditions are obtained using Hamilton's variational prin-

ciple and how the solution to the equilibrium equations are determined using a numerical 

iterative approach. These results are presented primarily as background information for 

chapter 6. 
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Next, in section 5.3.2 the approximate solution for the vibration of cylinders using the 

energy method is reviewed and the frequency and mode shapes are obtained for Fliigge shell 

theory. The solution to the Fliigge shell equations for orthotropic cylinders with free-free 

boundary conditions is not found in the literature, hence this minor extension to existing 

theories and methods appears to be a new contribution. 

5.2 Review of the mechanics of fiber-reinforced 

composites 

The car body shell is essentially a curved orthotropic shell. Here, we generalize the 

material to include laminated composites. 

Each layer in a fiber-reinforced composite consists of long and continuous fibers em-

bedded in a matrix material. This type of the composite material, when properly designed, 

can be efficient in terms of stiffness and strength. The fibers can be parallel to each other 

(unidirectional), can be perpendicular to each other (cross-ply or woven fabric), or can be 

oriented along different directions (multidirectional). Laminated composites are composed 

of different layers, called ply or lamina, which are bonded together. A lamina or ply is a 

plane layer of a unidirectional fiber or woven fabric in a matrix. Let the first principal axis 

of a lamina x\ be in the fiber's direction. The second direction x2 is in the plane and the 

third one x3 is normal to the plane of the lamina [Daniel and Ishai, 1994], 
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5.2.1 Lamina mechanical properties 

In the case of anisotropic materials there is no plane of symmetry, the state of stress 

and strain at any point can be expressed by second-order tensors of stress and strain. The 

relationship between the stress and strain tensors rrrj and cki can be written as: 

— Cijkltkl (5.1) 

where C is a fourth-order tensor of stiffness. Noting that the stress and strain tensors are 

symmetric, the stress-strain relationship can be reduced and rearranged as follows: 

/ \ 
0"! 

02 

T~23 

Tl3 

\ T l 2 / 

/ \ / \ 

V 

(5.2) 

C11 C12 C13 Ci4 Ci5 Ci6 

C21 C22 C23 C24 C25 C26 

C3I C32 C33 C34 C35 C36 

C41 C42 C43 C44 C45 C46 

C5I C52 C53 C54 C55 C56 

C61 C62 C63 C64 C"65 ^66 

Here (,'tJ are the components of the stiffness matrix [C] in the ,, x2 and .x-3 coordinate 

system. This equation also can be written in terms of compliance matrix S — [C] -1 

€2 
£3 

723 

713 

V 7 1 2 / 

{ e} = [ S ] M (5.3) 

where {e} and {a} are the strain and stress vectors. Using path independency of strain 

energy, it can be shown that the stiffness and compliance matrices are also symmetric. 

Therefore the stiffness matrix, in general, has only 21 independent components. 
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For orthotropic materials there are three perpendicular planes of symmetry, usually 

chosen such that they are perpendicular to the symmetry planes. For such materials, normal 

stresses do not produce shear stresses. Therefore, it can be concluded that .SY-i = .S'ls = 

Si6 = .S'24 = S25 = 526 = •S'34 = S35 = S'36 = 0. Another argument can be used for 

applying the shear stress to show that S45 — S,K = Sr>6 = 0. Hence the stiffness matrix can 

be expressed in the following form: 

/ \ 
Cn C\2 C13 0 0 0 

C12 ('22 c23 0 0 0 

C13 C23 C33 0 0 0 

0 0 0 C44 0 0 

0 0 0 0 C'55 0 

0 0 0 0 0 C66 

(5.4) 

5.2.1.1 Thin lamina 

For thin unidirectional lamina, if the forces are applied in the plane of lamina, the plane 

stress approximation can be used as follows: 

<73 = Ti3 = r23 = 0 (5.5) 

Therefore the stress-strain relationship is: 

/ / \ 
<y\ 

02 

v r 1 2 / 

Q11 Q\2 Q l 6 

Qtt Q22 Q26 

Q16 Q 26 Q 66 
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where 

QW Q12 Ql6 

Q12 Q22 Q26 

\ / \ 5 n 5 i 2 S16 
-1 

y Ql6 ^26 ^66 y 

^12 S"22 S26 

5l6 ^26 >566 

(5.7) 

In the above [Q\ and [5] are the stiffness and compliance matrices for the plane stress 

condition. The components of the stiffness matrix can be determined using Hooke's law 

and considering the plane stress approximations as follows: 

<?ii = 

Q22 = 

QL2 

E 1 
1 - ^12^21 

E2 

1 - V12V2l 

2̂1 Ei 
1 - ^12^21 

Q 66 — G12 

V12E2 
1 - ^12^21 

where EI and E2 are the elastic moduli, in which subscripts 1 and 2 correspond to directions 

parallel and perpendicular to the fiber and vX2 and v21 are the Poisson ratios. 

5.2.2 Mechanical properties of laminated composites 

In this section, the stiffness matrix for a laminated composite is reviewed. The analysis 

is based on laminated plate theory under small deformations. It is assumed that: 

• The strains vary linearly across the thickness of the laminate 
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The shear deformations are negligible and can be disregarded 

The out-of-plane normal stress AZ and the shear stresses TXZ and RYZ are negligible 

comparing to the in-plane shear stresses 

It is concluded from the above approximations that the plane-stress assumptions can be 

used to determine the stiffness of the laminated composites [Kollar and Springer, 2003]. 

Since we are interested in symmetric laminates, the reference plane is the midplane. The 

strain in the midplane can be written in terms of the in-plane displacement components as 

follows: 

du dv _ du dv 
x dx v dx xy dy dx 

(5.8) 

and the strains at a general point are: 

/ \ 
kx 

ev 

y J 

( \ 

V exy ) 

+ z 

{ \ 
Hx 

y Kxy J 

(5.9) 

where 2 is the distance from the reference plane and: 

d2w 
Kx 

d2w 2 d2w 
(5.10) 

dx2 dy2 dxdy 

are the curvatures of the midplane. In order to evaluate the in-plane forces shown in Figure 

5.3 the stresses first need to be evaluated and integrated along the thickness of laminate: 

Nx 

Mx 

- I . 

-L 

ht 

-fih 
hi 

hb 

aTdz 

zaTdz 

My — J (JydZ 
-hb 

M 

-L 
L 

Nxy — 

ht 

-hb 

ZOydZ M xy 

-f. 

ht 

-hb 
ht 

Txydz (5.11) 

ZTxydz 
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where N and M are the in-plane forces and moments per unit length, and ht and are the 

distances to the top and bottom of the laminate from the midplane. In order to calculate 

the internal in-plane forces, for each lamina the stresses in the principal directions must be 

transformed to the x, y, z coordinates. Therefore for each lamina one can write: 

/__ _ _ \ / \ ( \ 
<?X 

a„ 

\ Txy J 

Qll Ql2 Q16 

Q12 Q22 Q26 

Q16 Q 26 ^66 

(5.12) 

y 7xy J 

where 

\Q) = 

/ 
Qn Q12 Q16 

Q12 Q22 Q 26 

Qw Q 26 ^66 

\ -1 
c2 s2 2 CS 

<? -ICS 

—cs cs c2 — s2 

[Q] 

cs 

—cs 

-2cs 2cs c2 - s2 

/ 
(5.13) 

In the above equation c = cos 0 and s = sin 6, where 0 is the angle between the first axis of 

the laminate, x, and the first principal axis of the lamina. Noting that the matrix [Q] does 

not vary across each ply, the integrals in equation (5.11) can be written as summations. The 

in-plane forces and moments can be related to the strains and curvatures of the midplane as 
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follows: 

NX 
\ / 

A n A12 AW BN B\2 B16 
\ / 

e-X 
\ 

Ny A12 A22 A26 B12 B22 B26 

Nxy A16 A26 AQQ BW B26 Bee 7xy 

MX BN BI2 BIE DN Di2 D16 Hx 

MY B\2 B22 B26 D12 D22 D2e Ky 

MXY ) V B16 B2Q Bee D16 D26 Dee \ Kxy / 
where: 

K 
A i j = ^Z{Qij)k(zk -

fc=1 
1 K

 -

fc=i 
1 K _ 

Da = ~ - 4-i) 
6 k=i 

Here K is the total number of plies and Zk and Zk-i are the distances from the reference 

plane to the top and bottom surfaces of the kth ply. The matrices A, B and D are the 

stiffness matrices of the laminate. 

5.3 Vibration of thin cylindrical shells 

In this section, the vibration of cylindrical shells is briefly reviewed. Let u, v and w be 

the axial, circumferential and radial displacements and r, 9 and x be the corresponding axes 

in cylindrical coordinates. Let z be the distance from the reference plane. It is assumed 
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y 

Figure 5.3: Internal forces in a plate 

that: 

• The thickness of the shell is small compared to the radius. 

• The displacements are small such that second-order terms can be neglected. This 

assumption results in linear differential equations. 

• The transverse normal stress is negligible comparing to the other normal stresses. 

• Normals to the middle surface remain normal and straight after deformation (Kirch-
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hoff's Hypothesis) which results in: 

Izx = 7 zO = = O 

The strains and curvatures of the midplane of a cylinder are related to its displacements 

using the following equations [Leissa, 1973]: 

du 
^x 7\ 

OX 

1 dv w 
ee=Rd6 + R 

dv 1 du 
6x0 = a; + Rife (5"15) 

d2w 
= - "55- (5-1 6) o^x 

1 f dv d2w 
Ke = R2 \d0 dO2 

_ fdv _ d2w \ 
T~R\dx ~ dOdx J 

These strain-displacement relationships can be simplified using physically motivated as-

sumptions. In Fliigge shell theory no other simplifications are assumed and the total strains 

are obtained as [Leissa, 1973]: 

fix — (tx ZKx) 

ee = fa + ZKe) 
1 R 
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For instance, in Love-Timoshenko shell theory it is assumed that z/R is negligible com-

pared to unity, leading to the following strain-displacement relationships: 

A comprehensive study of other strain-displacement relationships can be found in Leissa 

[1973], 

5.3.1 Equations of motion and boundary conditions: a 

variational formulation 

In this section, Hamilton's variational formulation is used to find the equations of mo-

tion and boundary conditions for a cylindrical shell. The analysis begins with Hamilton's 

Principle [Soedel, 2004] 

— £x + ZK-'X 

ee = te + zne 

1x0 - txO + ZT 

(5.17) 

where T is the kinetic energy: 
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and U is the elastic strain energy: 

- T - -

ex Qu Q12 ex 

" - u 
Cy Q12 Q 22 Q26 ey RdOdxdz 

1xy Qi6 Q26 Qm Ixy 

For convenience, the formulations are written for a cylinder with unit radius. The results 

can easily be converted to the general case by scaling the wave number and stiffness matrix. 

Using the Love-Timoshenko shell theory assumptions, the total strains are: 

EX — ^X ZWXX 

e8 = ve + w + z (vg - Wee) 

1x6 = ue + vx + 2z (vx - wx6) 

In these expressions the indices of u, v and w indicate partial derivatives. The potential 

energy can be written as: 

u = \ J ~ + 2 _ z w x x ) ^12 [ve + w + z (ye - Woe)] + 

2 (ux - zwxx) Q16 [Vx + ue + 2z (vx - wx0)] + Q22 [ve + W + Z (ve - w6e)f + 

2 [ve + W + Z (vg - Wgg)] Q26 [vx + Ug + 2z (llx - WtXo)} + 

Qm ivx + ue + 2z (vx - wxg)f) dV 

Here we assume that the laminates are symmetric so that B = 0 in equation (5.14). Taking 

the variational operator inside the integral, substituting Qij from equation (5.13) and per-

forming the integration in the thickness direction, the variation of the potential and kinetic 
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energies can be written as: 

SU — (AnuxSux + Dnwxx5wxx + A\2 (ux5 (v0 + w) + (v0 + w) Sux) 
J V 

- D12 (wxx5 (v0 - Woo) + (Vo - Woo) Swxx) + Ale (ux5 (vx + u0) + (vx + u„) 5ux) 

- 2D]fi (Wxx6 (VX - wxe) + (vx - WX6) 5wxx) + A22 (ve + W) 5 (v6 4- w) 

+ D22 (vg - wee) S (ve - w0e) + A2e ((v6 + w) 5 (vx + ue) + (vx + u9) 5 (v0 + w)) 

+ 2D26 ({v9 - wee) 8 (vx - wx9) + (vx - wxB) 6 (v6 - wee)) + A6e (vx + ue) 6 (vx + ue) 

+ ADm (vx - wx6) 5 (vx - wx6))dV 

5T = p (u5u + iiSv + w8w) Rdddxdz 
J V 

181 



www.manaraa.com

CHAPTER 5. 

Finally, after integrating by parts equation (5.17) becomes: 

I 

I 

(Anux + A12 (V0 + W) + Am (vx + ue)) 8udQ+ 
( 

A16Ux + A66 (vx + ug) - 2DiEWXX + 4 D m (vx - wxS) 

+A26 (vg + w) + 2D26 (Vg -

5v+ 

\ • • / / \ 
Dnwxxx + (£>12 + 4 D m ) ( V x g - Wxgg) + 2D16 (Vxx - 2 W x x g ) 

V 
+2 D26 

Sw+ 

7 

X 

X 

[Dn'Wxx - D12 {vg - Wgg) ~ 2Di6 (Wa; - W ^ ) ) (S'U^-f 
/ 

\ 

X 

+ A 12 (wie + rox) + j4i6 (VXX + 2UXG) + A26 (T'gg + WE) 

+Aee (vxg + Ugg) - pTu 

Ai2uxg - DI2Wxxg + A22 (vSg + Wg) + D22 (Vgg - Wggg) 

+Am (VXX + Uxg) + 4D66 (Vxx - Wxxg) + Aieuxx - 2Di6WXXX 

+A26 (2vUx + wx + uve) + 4D26 (vx0 - wx08) - pTv ^ 
{ \ 

-DUWXXXX - AI2Ux + D12 (vxxg - 2Wxx0g) - A22 (vg + W) 

5udV+ 

5vdV+ 

\ 

SwdV = 0 

/ 

+A>2 [Veee - Weeee) + 2£>i6 (v x x x - 2wxxxg) - A26 (vx + ue) 

+4D2 6 (vxgg - Wxggg) + 4 D m ( l,xx6 ~ wxx6$) ~ PT'W 

Since the variational displacements 5u, Sv and Sw are arbitrary this equation can only be 

satisfied when the integrands inside the double and single integrals vanish. This results 

in three equilibrium equations and four equations for the boundary conditions. The final 
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equilibrium equations are: 

Auuxx + 2Amux0 + Amu(m + Amvxx + A26v00 + (A12 + Am) vx9 + AI2Wx 

+ A2&we — pTu = 0 

AIeuxx + (A12 + ,466) ux6 + A26U99 + (A66 + 4D6 6) vxx + 2 (A2§ + 2D26) vx9 

+ (A22 + D22) vee + A26WX + A22W9 - D22W99E - (4D 6 6 + Dl2) WXXB 

- 2Dwwxxx - AD26wx99 - Ptv = 0 

AI2Ux + A26u9 + A26VX + A22v9 - [DL2 + 4 D M ) vxx9 - D22V999 

- 2 D m v x x x - AD26vx99 + A22W + 2 (D12 + 2D16 + 2D66) wxx99 + D22W9eee 

+ 4:D26WX009 + Dnwxxxx + pTw = 0 

which can be written in an operator form as: 

/ \ / > 

L II LI2 L13 U 

L\2 L2 2 Z/23 v 

i L13 L23 I/33 W , 

( \ 0 

\ ° J 

(5 
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where: 

, 92 n A 92 A 92 92 

L U = A n W + 2 A l 6 t ^ + Am{W~PTW 
82 d2 82 

L12 = L21 = A16^ + (A12 + Am) — + A26— 

& d 
L13 — ^31 = Ai2— h A2Q — OX 00 

d2 d2 d2 82 

L22 = (v466 + 4D66) — 2 + 2 (A26 + 2D2 6) — + (A22 + D22) ^ - PT—2 

8 8 8 3 8 3 

L23 = L32 = ^267^- + ^22 ^ - D22TT^ ~ {D12 + 4 D M ) 'dx 80 *'803 v oy 8x280 
83 8 3 

- 2 D 1 6 — - AD26-' dx3 8x802 

L33 = ^ 2 2 + 2(D1 2 + 2D16 + 2 D 6 6 ) ^ ^ + D 2 2 ^ 

, r, 0 4 r, 9 4 9 2 

The boundary conditions are: 

du = 0, Anux + A12 (vg + w) + A16 {Vx + ue) = 0 

dv = 0, ^lew® + A66 (vx + ue) - 2Dwwxx + 4 D m (vx - wx0) + A26 (ve + w) 

+ 2D26 (vg ~ Wgg) = 0 

Sw = 0, -DNWXXX + (D12 + 4L>66) (Vx0 - wx0e) + 2 D w (VXX - 2wxx0) (5.19) 

+ 2Z?26 (voe - Wegg) = 0 

Swx = 0, Duwxx - D12 (Ve - Wee) - 2£>ie (vx - wxB) = 0 
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5.3.1.1 Exact numerical solution 

In this section the solution for the mode shapes and natural frequencies of a free-free 

cylinder is obtained using an iterative numerical approach. First the solutions to the mode 

shapes are expressed as a Fourier series in circumferential direction and an exponential 

series in the longitudinal direction: 

e A ' V n w = Y C jex 'xf?n a (5.20) 

Substituting the above solutions, the equilibrium equations in (5.18) can be written in ma-

trix form. 

EN E\2 E\3 a 

E12 E22 E23 P 
eA XEIN9 = Q (5.21) 

E12 E23 E33 1 

where: 

En 

E\2 

E\3 

E22 

E23 

E33 

AnX2 + 2in\A16 - n2A6e + 77 

AIQX2 + inX (A12 + Am) - nM26 

A12A + inA26 (5.22) 

(Am + Wee) A2 + 2 mA (A26 + 2D2 6) - n2 (A22 + D22) + rj 

AA26 + inA22 - inX2 (D12 + 4D66) - 2X3DW + 4n2XD26 + in3D22 

A22 - 2n2X2 {D12 + 2Dle + 2Dee) + n*D22 - iin3XD2e + X4Dn - V 

in which 77 = pr^2, and PT — J pdz. 
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The eighth-order characteristic equation giving the so-called dispersion relationship 

between the frequency parameter 77 and wavenumber A is given by | E\ = 0. For each the 

characteristic equation yields eight values of A. Furthermore for each A, the corresponding 

amplitudes of the displacements, a and /? can be determined from equation (5.21). To 

obtain the natural frequencies and mode shapes, the boundary conditions must be satisfied. 

For a free-free cylinder the boundary conditions are: 

N* = (AnXiai + Al2 + + ^16 (XjPj + ina3)) Cie±^ = 0 (5-23) j 

Mx = J2 (Dnx2j - nDn (iPj + n) - 2XjD16 ( f y - in)) C j e ^ = 0 (5.24) j 

Nxe - Mxg/R = (^leAjtty + Am ( A j f y + ina3) - 2Dm\)+ j 

4AjZ?66 {Pj - in) + A26 (injSj + 1) + 2nD26 (ipj + n)) C j e ^ = 0 (5.25) 

Q = Y , (-^11 Aj3 + nXi (^12 + 4^6e) (iPj + n) + 2\)DW (Pj - 2in) + j 

2n2L>26 (~PJ + in)) C^^R = 0 (5.26) 

An iterative approach is used to find the natural frequencies and mode shapes of cylinders. 

For each value of 77 the corresponding A j, a3 and i33 are evaluated using the dispersion 

relation in (5.21). The obtained values are then substituted into the boundary conditions in 

(6.5)-(6.8), and rearranged to the following matrix form: 

NC = 0 (5.27) 

where C is the vector of unknown coefficients Cj for j — 1,2, • • -8. In order to have 

nontrivial solutions we must have |jV| = 0 . Solving this equation numerically the natural 
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Table 5.2: Properties of the isotropic copper pipe 

Length .2133 (m) 

Thickness .75774 (mm) 

Radius 10.8 (mm) 

E (Elastic modulus) 129.35 GPa 

v (Poisson ratio) 0.34 

p (Density) 8970 (Kg/m3) 

frequencies of the cylinder is determined. The coefficients Cj can then be evaluated from 

the equation (5.27). The obtained values for Xj, ctj, ftj and Cj is substituted into equation 

(5.20) to obtain the mode shapes. 

5.3.1.2 Numerical results 

As an example, the natural frequencies and mode shapes of a copper cylinder are eval-

uated. The properties of the copper pipe are shown in Table 5.2. The natural frequencies 

of the copper pipe using the solution of equations (5.21)-(6.8) and finite element analysis 

are compared in Table 5.3. Figures 5.4 and 5.5 compare the solutions for the mode shapes 

associated with circumferential wave number n = 1. In the finite element model using 

ABAQUS general shell element 54 is used where Sanders-Koiter shell theory is utilized in 

element formulations [Abaqus documentation, 2007]. The model consists of 161 and 80 

shell elements in longitudinal and circumferential directions. Figures 5.6 - 5.8 show the 
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Table 5.3: Natural frequencies of copper pipe using numerical method for solving equilib-

rium and boundary conditions, compared with finite element analysis 

n f(Hz) f(Hz) (ABAQUS) % error 

1 2097 2103 0.2 

1 5206 5219 0.2 

2 3200 3178 0.6 

2 3208 3186 0.7 

2 3331 3310 0.6 

2 3836 3820 0.4 

2 4963 4960 0.0 

2 6676 6688 0.2 

2 8809 8837 0.3 

3 9041 8973 0.7 

3 9050 8981 0.8 
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Figure 5.4: Mode shape associated with n = 1 using exact numerical solution 

mode shapes associated with circumferential wave number n = 2 using equations (5.21)-

(6.8) and Figures 5.9 - 5.11 show the corresponding mode shapes calculated by finite ele-

ment analysis. Figures 5.12 and 5.13 compare the mode shape results for circumferential 

wave number n = 3. It can be seen that the natural frequencies and the mode shapes 

obtained from equations (5.21)-(6.8) are in close agreement with the finite element results. 

As another example, we consider the more general case of an orthotropic cylinder with 

properties shown in Table 5.4. The natural frequencies of the cylinder obtained using 

equations (5.21) - (6.8) and finite element analysis are compared in Table 5.5. The mode 

shapes for circumferential wave number n — 1 are presented in Figures 5.14, 5.15 and 5.16, 

5.17 and those for n = 2 are shown in Figures 5.18- 5.23. As in the isotropic example, the 

results obtained from equations (5.21)-(6.8) are in close agreement with the finite element 
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(2103 Hz) 

Figure 5.5: Mode shape associated with n = 1 using finite element analysis (ABAQUS) 

(3200 Hz) 

| 

mrnrnm 

] 
Figure 5.12: Mode shape associated with n = 3 using exact numerical solution 
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Figure 5.7: Mode shape associated with n = 2 using exact numerical solution 

(4963 Hz) 
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Figure 5.12: Mode shape associated with n = 3 using exact numerical solution 
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Figure 5.9: Mode shape associated with n = 2 using finite element analysis (ABAQUS) 

(3186 Hz) 

Figure 5.10: Mode shape associated with n = 2 using finite element analysis (ABAQUS) 
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(4960 Hz) 
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Figure 5.11: Mode shape associated with n — 2 using finite element analysis (ABAQUS) 

(9050 Hz) 
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Figure 5.12: Mode shape associated with n = 3 using exact numerical solution 
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(8981 Hz) 

Figure 5.13: Mode shape associated with n — 3 using finite element analysis (ABAQUS) 

Table 5.4: Properties of the orthotropic cylinder 

Length 7.5 in 

Thickness 0.0169 in 

Radius 0.3642 in 

Lay up [90 0 90 90 0 90] 

Ell 4.3e7 Psi 

E22 8.2e5 Psi 

G12 7.0e5 Psi 

NU12 0.25 

p (Density) 1.50104e~4 {slug/in3) 
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Table 5.5: Natural frequencies of orthotropic cylinder using numerical method for solving 

equilibrium and boundary conditions, compared with finite element analysis 

n f(Hz) f(Hz ) (ABAQUS) % error 

1 3985 3987 0.0 

1 7652 7657 0.0 

1 11333 11342 0.0 

2 7280 7138 2.0 

2 7431 7289 1.9 

2 8104 7976 1.6 

2 10984 10904 0.7 

3 20599 19734 4.3 
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(3985 Hz) 

_1 . ;.; 
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1 ! 

Figure 5.14: Mode shape associated with n — 1 using exact numerical solution for or-

thotropic cylinder 

(7652 Hz) 

fern. •IIP 

Figure 5.15: Mode shape associated with n = 1 using exact numerical solution for or-

thotropic cylinder 
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(3987 Hz) 

Figure 5.16: Mode shape associated with n = 1 using finite element analysis (ABAQUS) 

for orthotropic cylinder 

(7567 Hz) 

• ( J 

L m •lifc 

Figure 5.17: Mode shape associated with n — 1 using finite element analysis (ABAQUS) 

for orthotropic cylinder 
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Figure 5.18: Mode shape associated with n = 2 using exact numerical solution for or-

thotropic cylinder 

analysis results. 

5.3.2 Approximate solution using Rayleigh-Ritz tech-

nique 

It is noted that the only approximations in equations (5.21)-(6.8) are the approximations 

in the strain-displacement relations of the shell theory. The only problem in the numerical 

approach based on these equations is that numerically finding some of the solutions, rj, is 

difficult. Hence approximate methods are often used for finding the natural frequencies 

and mode shapes of cylinders. One method is to use the Fourier series expansions for the 
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(7431 Hz) 

mK 

Figure 5.19: Mode shape associated with n = 2 using exact numerical solution for or-

thotropic cylinder 

(8104 Hz) 

Figure 5.20: Mode shape associated with n — 2 using exact numerical solution for or-

thotropic cylinder 
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m m p p 

Figure 5.21: Mode shape associated with n = 2 using finite element analysis (ABAQUS) 

for orthotropic cylinder 

(7289 Hz) 

Figure 5.22: Mode shape associated with n = 2 using finite element analysis (ABAQUS) 

for orthotropic cylinder 
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(7976 Hz) 

Figure 5.23: Mode shape associated with n = 2 using finite element analysis (ABAQUS) 

for orthotropic cylinder 

longitudinal dependence of mode shapes. Here the approximation arises from the trun-

cation of this series. It is noted that no truncation is performed in the numerical method 

explained in section 5.3.1.1 and the solutions obtained from the dispersion relation and 

boundary conditions equations in (5.21)-(6.8) are exact and the only approximation is due 

to the root finding procedure in numerically determining rj. The most commonly used ap-

proximate technique to compute the natural frequencies and mode shapes of the cylinder is 

the Rayleigh-Ritz technique. In the simplest form of this approach, one writes the modal 

displacements as the product of two appropriately defined functions, one in the axial co-

ordinate and the other in the circumferential coordinate. These functions are chosen such 

that they satisfy the boundary conditions. The case of simply supported cylinders is the 
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most straight forward because trigonometric functions can be used in both directions. If we 

denote m and n as the wave numbers in the axial and circumferential directions, then we 

have: 

mnx „• , f Urnn = Amn COS —j— COS TlOe mn 

7717T X 
Vmn = Bmn sin —— sin n(9e l u W (5.28) 

LJ 

mnx iu] t wmn = Crnn cos —— cos nve mn 
LJ 

where urnn, vmn, and umn are the modal displacements in axial, circumferential and radial 

directions. The coefficients Amn, Bmn and Cmn are the amplitudes of the modal displace-

ments in each direction. For each pair of wave numbers, m and n, the amplitudes Amn, Bmn 

and Cmn as well as the natural frequencies u>mn must be evaluated. As noted in section 5.1, 

Sharma and Darvizeh [1987], Sharma and Johns [1971] have shown how this can be done 

using the Rayleigh-Ritz technique. 

For the free-free cylinder, a slightly more complicated function is needed for the lon-

gitudinal component. The typical procedure is to use a two-term truncated series expan-

sion for this longitudinal function. The form for this function is obtained using beam-like 

modes. This results in solutions with surprisingly good accuracy particularly for longer 

shells. Furthermore if the shell is very long ( L / m R > 8) then classical beam theory may 

be used for finding the n — 1 mode shapes of the cylinder. In the next section we review 

the derivations of mode shapes for a free-free Euler-Bernoulli beam. These mode shapes 

are then used in the Rayleigh-Ritz method as explained above. 

202 



www.manaraa.com

CHAPTER 5. 

5.3.2.1 Mode shapes of a free-free Euler-Bernoulli beam 

The equation of motion for an Euler-Bernoulli beam with mass per unit length m and 

constant flexural rigidity E I can be written as: 

„rd4w d2w 

If the beam is free at both ends the boundary conditions can be expressed as: 

d2w d3w 
M=EI— = 0, V = - £ / — = 0 

oxz ox 

at x = 0, L, where M and V are the bending moment and vertical shear force. The jth 

mode shape can be written as: 

<t>j = J2CkieXkjX 

k 

Therefore, the dispersion relationship between the frequency and wavenumber is: 

. rnuj2A 
A gj- = 0 (5.29) 

If Sj = ^Jmulj/EI, then the solutions to the above equation are ±Sj and ±isj, and one 

can write: 

<j>j = Ci sin SjX + cos sjx + C3 sinh SjX + C4 cosh sjx (5.30) 

Let A j = Sj L, then substituting the above equation into the boundary conditions one can 

write: 

0 - 1 0 1 Ci 

- 1 0 1 0 c 2 

sin A j — cos A j sinh Aj cosh A j c 3 

cos A j + sin A j cosh A j sinh A j CA 

eXx = 0 (5.31) 
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Table 5.6: Frequency number A? = LS/rnujj J El for free-free beam for the first 5 modes 

j Aj 

1 4.73004074 

2 7.85320462 

3 10.9956078 

4 14.1371655 

5 17.2787597 

In order to have non-trivial solutions for the above equations the determinant of the matrix 

must be zero which results in the following equation: 

cos Xj cosh Xj = 1 

Solving the above equation numerically, the wavenumbers Xj are evaluated. The first five 

wavenumbers are shown in Table 5.6. Once the wave numbers are obtained the unknown 

coefficients Cj for mode shapes are determined using equation (5.31). Finally, the jth 

natural frequency is uij — a / X j E I / m L and the jth mode shape <p3 [x) is obtained from 

equation (5.30): 

A;x , Xix cosh A, —cos A, / . , A,x . A 
== cos - 4 - + cosh - I r—1 — 1 sinh - f - + sin (5.32) 

L L smh Aj — sin A j \ L L J 
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5.3.2.2 Frequencies and mode shapes of a free-free composite cylinder 

As explained in section 5.3.2 in the approximate method one must assume the mode 

shapes. It has been shown that the beam mode shapes can be used instead of the trigono-

metric terms in equation (5.28) for the dependence in the longitudinal axis. The solution to 

the equations of motion can be written as [Sharma and Darvizeh, 1987, Blevins, 1979]: 

Umn = Ann<(®) COS nOe^^ 

vmn = Bmn</>m(x) sin nde> iaW (5.33) 

wmn = Cmn<f)m(x) cosn0eZUJmnt 

where <pm is m t h beam mode shape given in the equation (5.32) and, as before, u>mn is 

the natural frequency associated with the longitudinal wavenumber m and circumferential 

wavenumber n. The first step of the Rayleigh-Ritz technique is to calculate the kinetic 

and potential energy. The unknown coefficients Amn, Bmn and Cmn are then obtained by 

minimizing the total energy. Substituting equation (5.33) into the strain relations yields: 

C-X = (ANN - ) * c m n ) C ( * ) c o s NOE™ 

= T^T ( n r + + + <j>m{x) cos nOe™ 

i * = T T J ( { T ) B m n - ^ T T + ( l + W ) { - T ) [ B m n + n C m n ) ) s ' m n 6 e l u t 

The potential energy of the laminated composite cylinder is: 

U = J J J Qnex + Q22el + Qmllo + 2 (Q12ea.ee + Qx^xlxe + Q2^elxe) #(1 + )df)dxdz 
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and the kinetic energy is: 

T = \ F J J P {U2 + i2 + W2) R( 1 + ^jdddxdz 

The set of equations in (5.33) are now substituted in the expression for total energy: 

n = U + T 

and the total energy is minimized by taking the derivatives with respect to the unknown 

coefficients: 

a n a n dn 
= 0, ^rr:— = o, = o 

dA dBn ' dC„ 

This leads to a homogeneous system of linear equations in the unknown coefficients: 

( 
an ~ «12 

\ 
a 13 

a12 a22 - H2 a23 

a 1 3 &23 ®33 n 2 

( \ 
Arnr> 

Bn 

^ Crnn J 

= o (5.34) 

where 

Q2 = a)2ptR2 
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and: 

/ Am \2(A D2 , D D\ , 2 2 (,, , Dee 

an = (-£-) ( A n R + ^li-S) + n <* \Am ~ + 

an = n ( ^ ) {{A12R + B12)al - (A66R + B6e)a2) 
an = n ( ^ ) f(BnR2 + D n r t ) - n2(2Z?667? - + (n2B12 + A12R)al) 

a22 = ri2A22 + %B22 + (A66jR2 + 3BeeR + SDee) <*2 
/l Li 

n3 A 
a23 = nA22 + —B22 + {~)2n ((2B6eR + 3D66)a2 - (B12i? + Dl2)al) 

/l X7 

fl - ( W n ff2 + 4 I (2n2 — 1)B22 (1 — n2)2D22 «33 — ( - ^ J ^ll-K + ^22 H ^ 1 ^ 

+ ( ^ ) 2 (4nD6ea2 - (B12R + n2D12)2a,) 

a\ = — [ 4>"4>dx, a2 = — [(<f>')2dx 

To have a nontrivial solution for the above equation the determinant of the 3 x 3 matrix 

in equation (5.34) must be zero. This yields a cubic equation in Q2. Only the positive roots 

are retained. Therefore, associated with each pair of wave numbers m and n, three natural 

frequencies and three sets of mode shapes can be determined. These three modes generally 

correspond to motions which are predominantly radial, circumferential and axial. 

5.3.2.3 Numerical result 

Here the two examples in section 5.3.1.1 are considered. For the isotropic example, 

the natural frequencies obtained using the Rayleigh-Ritz method are compared with the 

finite element results in Table 5.7. The mode shapes for the first modes associated with 

circumferential wavenumbers n = 1,2 and 3 are also shown in Figures 5.24 - 5.28. The 
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Table 5.7: Natural frequencies of copper pipe using the the approximate energy method 

n m / (Hz) (energy) / (Hz) (ABAQUS) % error 

1 1 2171 2103 3.2 

1 2 5416 5218 3.8 

2 0 3164 3178 0.4 

2 0 3177 3186 0.3 

2 1 3308 3310 0.0 

2 2 3833 3820 0.3 

2 3 5009 4960 1.0 

3 0 8966 8981 0.2 

(2171 Hz) 

Figure 5.24: Mode shape associated with n = 1 using Rayleigh-Ritz method 
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(3164 Hz) 

Figure 5.25: Mode shape associated with n = 2 using Rayleigh-Ritz method 

(3177 Hz) 

r i 1 

Figure 5.28: Mode shape associated with n = 3 using Rayleigh-Ritz method 
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(5009 Hz) 

' ' —' ' I : 1 " ' — ) —n 

Figure 5.27: Mode shape associated with n = 2 using Rayleigh-Ritz method 

(8966 Hz) 

Figure 5.28: Mode shape associated with n = 3 using Rayleigh-Ritz method 
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Table 5.8: Natural frequencies of thin, balanced and symmetric laminate with properties 

shown in Table 5.4 

n m / (Hz) (energy) / (Hz) (ABAQUS) % error 

1 1 4129 3987 3.6 

1 2 8459 7657 10.5 

1 3 12442 11342 9.7 

2 0 7284 7135 2.1 

2 0 7281 7138 2 

2 1 7436 7289 2 

2 2 8183 7976 2.6 

2 3 9603 9257 3.7 

2 4 11409 10904 4.6 

2 5 13382 12748 5.0 

3 0 20603 19734 4.4 

Rayleigh-Ritz method was also used to analysis the orthotropic cylinder example and the 

results for the natural frequencies and mode shapes are shown in Table 5.8 and Figures 5.29 

- 5.33. 

Tables 5.7 and 5.8 show that the natural frequencies obtained by the Rayleigh-Ritz 

method are accurate. However, a comparison of mode shapes in Figures 5.24 - 5.30 with 

the corresponding mode shapes in Figures 5.4 - 5.23 obtained by equations (5.21) -(6.8) 
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f 

(4129 Hz) 

1 r— 

m u m 

- j — , — — r - —I -"l * 

Figure 5.29: Mode shape associated with n = 1 using Rayleigh-Ritz method for orthotropic 

cylinder 

(8459 Hz) 

r~ —I 1~ 

fBI I •wlPr 

Figure 5.30: Mode shape associated with n = 1 using Rayleigh-Ritz method for orthotropic 

cylinder 
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Figure 5.31: Mode shape associated with n = 2 using Rayleigh-Ritz method for orthotropic 

cylinder 

(7436 Hz) 

• M M 

' _1 L 

s tef--..^.; 

' - ^ 

Figure 5.32: Mode shape associated with n = 2 using Rayleigh-Ritz method for orthotropic 

cylinder 
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(8183 Hz) 

Figure 5.33: Mode shape associated with n — 2 using Rayleigh-Ritz method for orthotropic 

cylinder 

and finite element analysis reveals some inaccuracy of the Rayleigh-Ritz procedure, par-

ticularly near the boundaries. This is clearly seen by comparing Figure 5.25 with Figures 

5.6 and 5.9 for the first mode associated with the circumferential wavenumber n — 2 of the 

isotropic cylinder. The basic reason for this discrepancy is that the beam modes used in the 

longitudinal components of the mode shapes do not precisely satisfy the three dimensional 

boundary conditions. This leads to nonzero stresses at the edges of the cylinder. 

A more closer look at the stress distribution of the mode shapes at the free ends reveals 

very rapid variation of the stresses and strains in longitudinal direction as shown in Figures 

5.34 and 5.35 for the first mode shape associated with the circumferential wavenumber 

n = 2 of the isotropic cylinder. This is denoted as the edge effect. The beam mode shapes 
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Figure 5.34: Stresses at the edge of cylinder for the first mode shape 

S, SI? I SJifcO„ ltm,tlon ® 
i t , *•'> - H 
, ! gVe-ril 

*'<if>fi-l t . ,— r*>,ij^cae 

^lljfe^ 

Figure 5.35: Stresses at the edge of cylinder for the first mode shape 
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used in the Rayleigh-Ritz method do not include this effect. The edge effect is difficult to 

analyze, because even if Fourier series expansions are used to approximate the mode shapes 

in the longitudinal direction, a large number of terms is needed to model the displacement 

variation near the edge. 
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Perturbation analysis of the modal 

properties of composite cylinders 

In chapter 5, the mode shapes and natural frequencies of composite cylinders were 

obtained either by combining the dispersion relation with the equations for the boundary 

condition or by a Rayleigh-Ritz technique. In both approaches, numerical analysis was 

used to obtain the modal properties. While such numerical procedures are generally useful, 

they do not provide a deep understanding of the vibration behavior of cylindrical shells. In 

this chapter, perturbation analysis is used to derive analytical results that describe the free 

vibration of cylinders. These results are in terms of relatively simple closed-form math-

ematical expressions that provide insight in cylinder vibration behavior. It is shown that 

these expressions are also useful for system identification, where free-vibration measure-

ments are used to determine the elastic properties of the cylinder. 
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In cylindrical shells, the equations of motion and boundary conditions are complex even 

for the isotropic case and become considerably more complicated when considering com-

posite laminate material properties. The essence of the perturbation analysis as developed 

herein is to focus on the dominant characteristics of the vibration problem and to eliminate 

all terms that are of secondary importance in the derivations of the modal properties. 

In this chapter the focus is on cylindrical shells with either isotropic or orthotropic 

material properties. Some results are also derived for the more general case of symmetric, 

balanced composite laminates. The perturbation analysis begins by reducing the intractable 

eighth-order characteristic equation for the dispersion relation into decoupled bi-quadratic 

forms. These bi-quadratic forms lead to relatively simple closed-form analytical expres-

sions for the wavelength as a function of natural frequency and the cylinder material prop-

erties. Perturbation is used to derived simplified results for the internal forces and moments. 

These results are used in the boundary conditions to arrive at the final analytical expressions 

for the natural frequencies and mode shapes. 

Closed form results for the dispersion and modal properties have been previously de-

rived for canonical structures such as beams, plates and isotropic, simply supported cylin-

ders. The results in this chapter for orthotropic free-free cylinders are new. The chapter 

concludes with some remarks on how the results can be used for system identification and 

on extensions to more general composite materials. 
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6.1 Framework of the perturbation analysis 

Before beginning the perturbation analysis of the cylinder vibration problem, it is neces-

sary to define some additional notation and to very briefly outline the perturbation process. 

The essence of this process is to express the analytics in a manner such that small terms 

can be separated from the relatively large terms. This implies that every term should be 

non-dimensional, so that small would always mean small in comparison with unity. 

In perturbation theory, it is convenient to use the big 0 and small o (Landau) notation. 

If e is small compared with unity then we use the notation (){( ) for terms that are of the 

same order of magnitude as e and o(e) for terms that are at least an order of magnitude 

smaller than e. For instance, we have: 

— — 1 — e + e2 — e3 + -- - — 1 — e + o(e) = 1 + 0 ( e ) (6.1) 
1 + € 

v / T T 7 = 1 + | + o(e) = 1 + 0 ( e ) (6.2) 

In perturbation theory terminology, the zeroth-order expressions are those which involve 

only the largest terms, typically of order 1, or 0(1). The first-order expressions typically 

involve terms of order 0(e), the second-order expressions involve terms of order 0(e2) and 

so on. Hence, the first- and second-order approximations to 1/(1+e) are 1+e and 1 + e —e2. 
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For the cylinder problem, we begin with the following non-dimensional parameters: 

H=
h-

R 
~ x 
X=R 
a _ Aii 

~ A22 

13 A22H 

N " 
A22 

T7 M 

M = 

V 

A22R 

n 
A22R2 

A = A R 

1 = L R 

To gain some insight into these newly defined parameters, we consider the isotropic case. 

We have: 

~ 1 — i/ — ~ 
An - 1, A12 = V, A66 = AI§ = A26 = 0 

h 2 n h 2 n - l ~ v h 2 ~ ~ n 
_ 1 2 / Z 2 ' D N ~ U Y 2 R ^ 6 — 2 1 2 7 ? 2 ' 

Herein we examine thin shells where h R, so that are all small. Our perturbation 

parameter is e = y/h/R so that Dij — 0(eA). As a numerical example, we have, for the 
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copper and orthotropic examples, the following forms for the matrices A and D: 

A — J1 copper 

1 0.340 0 

0.340 1 0 

0 0 0.330 

0.413 0.140 0 

Dcoppe r = 0.140 0.413 0 10~ 

0 0 0.136 

8.260 1.667 0 

1orthotropic = 1 . 6 6 7 1 0 

0 0 1.808 

1.409 0.333 0 

Dorthotropic = 0.333 0.196 0 1 0 

0 0 0.358 

For notational simplicity, we drop the tilde notation in the remainder of this chapter. 

Next we restate the equilibrium equations and boundary conditions using the above 

non-dimensional form for the parameters. The equations of equilibrium in (5.21) can be 

expressed as: 

E11 En EIS 

E\2 E22 E23 

E12 E23 E33 

- 3 

a 

P = 0 

1 
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where 

En = AnA2 + 2in\Aie - n2A66 + r? 

En = Ai6A2 + inX (Au + A66) - n2A26 

En = Ai2X + inA26 (6.3) 

E22 = (A66 + ADm) A2 + 2mA (A26 + 2D26) - n2 (1 + D22) + r, 

E23 = AA26 + in - inX2 ( D n + 4D6e) ~ 2A3D16 + 4n2XD26 + in3D22 

E33 = 1 - 2n2X2 (Du + 2DW + 2Dm) + nAD22 ~ 4in3XD26 + X4Dn - v 

This is a generalized eigenvector problem that yields displacement components a and j3 

and longitudinal wave number A for each frequency parameter 77. 

To find the dispersion relation between A j and rjj the determinant of the matrix E is set 

to zero, leading to an eighth-order equation in A. For a symmetric and balanced laminate 

where B = 0 and y\IG = A2e = 0, this equation is: 

An ( -4D% + Dude) A8 + 4 i A n ( -D 1 6 d 5 + nDnD26) A7+ 

(AUMI + Dn (dj + d6d7) - 4d7D2
w) A6+ 

Ai (Die {And4 - Aud8 - d5d7) + nD2&Anmb + nDnD2&d7) A5+ 

(-A12 {Al2<k - 2d5d8) - d3d\ + Anm2 + d7rrii) A4+ 

4i (Di6d4d7 + nD26 (Al2 (~A12 + 2nd8) + Anm3 + d7m5 - n2d\)) A3+ 

(Anvrii - A12 (Ai2d2 + 2d4d8) + did\ + d7m2) A2 + 4inD26d7m3X + d7m4 
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where 

dx = 1 + D22n4 - rj 

d2 = - (1 + £>22) n2 + ?? 

d3 = 2n2 (D12 + 2L>66 + 2D16) 

d4 = n (n2D22 + l) 

d5 = n (4D66 + £>12) 

d6 = Am + ADm 

dj — n2A66 

d8 = (A12 + A66) n 

d9 = 2n (A26 + 2£>26) 

dio - A26 + 4n2£>26 

and 

mi = d\ — d3d6 + 16n2£>16^26 + D u d 2 

m2 — —d2dz + dide — 2d^d^ 

mz = d\ — 2ndi — n2d2 

mi — d2 + d\d2 

m5 = — a?3 + 2nds — n2de 
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We recall from chapter 5, equation (5.20), that the general form for the mode shape is: 

u = J}Tcjajexixein6, v = CjPjeXjXeme, w = ^Cjex>xeine (6.4) 
j j j 

To solve for the coefficients Cj, the boundary conditions must be satisfied. These boundary 

conditions are: 

NX = Y (AiiAjO? + An (in(3j + 1) + A16 (Aj/3j + inotj)) Cje±b^ = 0 (6.5) 
3 

Mx = ] T (D2
nX2j - nD12 (0j + n) - 2Aj£>16 (fa - in)) C j e = 0 (6.6) 

j 

Nxe - Mxe/R = C^ieAjaj + A66 {Xjfy + inaj) - 2D16\2+ j 

4XjDm ( f t j - in) + A26 (inPj + 1) + 2n£>26 (ify + n)) Cje
±h£ = 0 (6.7) 

Q = Y1 + nXi ( D l 2 + 4De6) + n) + 2 A ^ 1 6 - 2 m ) + j 

2n2D26 (~(3j + in)) C j e ^ = 0 (6.8) 

in which 77 = pru2/A22R2, and pr — J pdz. 

6.2 Dispersion 

The perturbation analysis begins with the dispersion relation, the relation between the 

frequency parameter 77 and the longitudinal wavenumber parameter A. We begin by exam-

ining numerical results for the dispersion relation using equations (6.3) before preceding 

to the analytical derivations. For the isotropic copper pipe example used in the previous 
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x 10 

Figure 6.1: Exact A j versus frequency for circumferential mode n = 1, solid line: real part, 

dotted line: imaginary part 
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<< 0 

1 1.5 
freq (Hz) x 10 

Figure 6.2: Exact A j versus frequency for circumferential mode n = 2, solid line: real part, 

dotted line: imaginary part 
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Figure 6.3: Exact A j versus frequency for circumferential mode n = 2, for orthotropic 

laminate, solid line: real part, dotted line: imaginary part 
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chapter, the dispersion relation is plotted in Figures 6.1 and 6.2 for circumferential wave 

numbers n = 1,2. Figure 6.3 shows the exact dispersion for n = 2 for the orthotropic 

example. The solid lines in these figures show the real part and the dotted lines show the 

imaginary part of A j. It can be seen that the wavenumbers A j are in conjugate pairs and 

positive-negative pairs. 

6.2.1 Perturbation analysis of the dispersion relation 

There are two groups of A j: the first group which we denote as ASJ are relatively small 

and correspond to relatively slowly varying displacements with respect to the longitudi-

nal coordinate x. The second group, Ai3, are large and correspond to steep exponential 

variations in x. These two groups of A; can be seen in Figures 6.1 - 6.3. 

For orthotropic laminates, we have Dw — D2e = 0 so that the coefficients of the 

characteristic equation are real. This immediately implies that the roots Aj are in complex 

conjugate pairs. Furthermore, the odd powers of A vanish for these laminates. Hence, if A 

is a solution of the characteristic equation, then —A is also a solution. In summary, for each 

group of A j, there are four solutions of the form A j — ±A# ± A/i. 

In this subsection, perturbation analysis is used to obtain explicit closed-form analytical 

expressions for the dispersion relation for both groups of A j. It can be seen in Figures 

6.1 - 6.3 that the dispersion relations for the smaller A, begin at a point (q, A) with A = 

0. This corresponds to the lowest natural frequency of an infinite cylinder vibrating with 

mode shapes that are constant with respect to the longitudinal coordinate, x. We begin 
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the perturbation analysis by obtaining analytical expressions for 77 at this critical natural 

frequency. 

6.2.1.1 Case I: A = 0 

In this case the equilibrium equations in (5.21) reduce to: 

77 - n2Am 0 0 

0 - n 2 (D22 + 1) + jy in (1 + n2D22) 

0 in (1 + n2D22) 1 + n4D22 - rj 

As described above, the solution to these equations correspond to the first set of mode 

shapes of an infinite cylinder. The modes associated with 77 = n2A6e are shear modes with 

mode shapes given by in-plane shear motion: u = cos nO, u — 0,w = 0. These modes 

have high natural with frequencies 77 — 0(1) and are not of interest herein. The remaining 

modes, with a — 0, are determined by: 

a 

(3 = 0 

1 

-n2{D22 + l)+v in(l + n2D22) 

in (1 + n2D22) l + n4D22-r) 

P 

1 
= 0 

The dispersion relation obtained by setting the determinant of the above matrix to zero is: 

-r?2 + (n2 + 1) (1 + n2D22) 77 - n2D22 (n2 - l ) 2 = 0 

The solution to this quadratic is: 

(n2 + 1) (1 + n2D22) ± \J(n2 + l)2 (1 + n2D22)2 - An2D22 (n2 - l)2 

77 = 

(n2 + 1) 
n2D2 2 + 1 - \ 1 + 1 - 4 ^ ( ^ - ^ 1 + 2n2 ] D22 
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where we are only interested in the low frequency mode. We recall from equations (5.14) 

that the D components of the stiffness matrix are of order 0(e4) and therefore are small 

compared to the A matrix components which are of order one. Hence, the radical in the 

above can be approximated by the first two terms in the Taylor series expansion, as noted in 

equation (6.2), resulting in the following first-order approximation for rj, which we donate 

as r)0: 

n2 (n2 - l)2 P22 
% = (n2 + 1) (6"9) 

which is of order 0(e4). The corresponding first- and zeroth-order approximations for the 

coefficient /3 in (6.4) is: 

1 + n4D22 - 7?0 = . ((n2 + 1) + n2D22 (3n2 - 1)) 
1 in (1 + n2D22) % n (n2 + 1) (1 + n2D22) 

1 n2 — 1 
P ^ - _)_2mZ)22— first-order (6.10) 

n rr + 1 
2 

[3 « — zeroth-order (6.11) 
n 

The zeroth-order result for /3 is well known and is often used to develop approximate shell 

theories [Sharma and Johns, 1971]. The first order result is new. 

6.2.1.2 Case II: A = As 

In this section we consider the smaller group of four A j. In perturbation analysis it is 

useful to use mathematical assumptions for some of the parameters in the beginning of the 

analysis so that the derivations can proceed. These assumptions are then verified at the end 

of the derivations. Due to the nonlinear relationships in many of the intermediate expres-
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sions, there are some iterations needed as different assumptions are examined. Herein, only 

the final iteration is presented. In the present case, we assume based partly on the analysis 

of the preceding subsection, that 77 — 0(e4), a = O(e), (3 — i/n + 0(e4) and A = 0(e). 

The first equilibrium equation given in the first row of equation (5.21) can be written in 

terms of a, j3 and A: 

(AnA2 - n2A66 + 77) a + inX (A12 + Am) 13 + A12A = 0 

which simplifies to: 

(AnA2 - n2A66) a - AA66 = 0 

after disregarding o(e4) terms. The results for a are: 

a = ~ A — , first-order (6.12) A n A2 - n2A66 

a = — A; zeroth-order (6.13) 
77. 

In the next step we focus on finding the dispersion relation for small A. Here we are 

interested in frequencies of order D, or 0(e4). We retain terms up to order O(c') in the 

characteristic equation to obtain a linear relation for 77: 

ai2A4 - 4in3 (n2 - l ) 2 D26X + n2 (770 - 77) (n2 + l) = 0 

where 

ai2 = A n - A2 12 

with solution 

a A4 

77 = y?o + 9 / 9—77 zeroth-order (6.14) 
nz (n1 + 1) 
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for orthotropic materials. The zeroth-order results include terms of order (9(Y4) and it is 

easily inverted, yielding the approximate solution for A in terms of 77: 

This simple dispersion relation for small A indicates that there are two pure imaginary and 

pure real solutions for A, all of the same absolute magnitude, and all of order e. We examine 

higher order results for A in the next subsection. 

It is necessary to include terms of order 0(e6) to obtain more accurate approximations 

for the dispersion relation for orthotropic and more general symmetric and balanced lami-

nates. 

6.2.1.2.1 MORE ACCURATE DISPERSION RELATION FOR SMALL A 

In this subsection we obtain the first-order approximation for the frequency parameter 

77. We retain terms up to 0(e6) in the characteristic equation: 

(6.15) 

A66a12X4 + ((ai2 (n2 + l) + A66 - 2n2A12Am) 77 + (2n4D22AX2Am (n2 - l) 

-A66 (4n6D16 + 2n4D12 (n2 - l) + 4r?D m (n2 - l ) 2 ) - 770a12 (n2 + l ) ) ) A2 

+ (-4in3D26A6e (n2 - l ) 2 ) A + n2 (770 - 77) (n2 + l) A66 = 0 
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After some straightforward but somewhat tedious algebraic and perturbation analysis, the 

final first-order results for 77 is obtained for case of orthotropic materials: 
/ 

A4v466<2l2 — A2 

( 2n2A66 (n2D12 (n2 - 1) + 2Dm {n2 - l)2) ^ ^ 

\ 

+%ai2 (n2 + 1) - 2niD22A12Am (n2 - 1) 

+n2VoAm (n2 + 1) / (6.16) 
{A66 + aia (n2 + 1) - 2n 2 A 1 2 A 6 6 ) A2 - n2Am (n2 + 1) 

To invert this relation to derive the corresponding solution for A in terms of 77, we use the 

following simple perturbation result. For a quadratic equation of the form ax2 + bx — c = 0 

where b << VTac, the first-order expressions for the solutions are: 

-b ± Vb2 + 4ac 1 
x = 

2 a 

-b ± y/iac 
2a 

2a 
-b±V4ac\l + 1 

4ac 
1 

2a 
-b ± V4ac ( ~ + 1 

\8ac 

Applying this to equation (6.16) we obtain: 

-{•n- Vo) in2 + 1 ) ^ I ( n 2 + 1 ) (770 - 77) A 
2A, 

± n\ 
66 ai2 

(77 (1 - 2n 2A 1 2) - 2n4 (n2 - 1) (Dl2 - D22A12) - 4 n 2 D m (n2 - l ) 2 ) 

2 a 12 

This concludes the analysis of the dispersion relation for small A. 

6.2.1.3 Case III: Large A, rj « 0 

To derive the perturbation results for large A, we begin with the assumptions 77 = 0(c), 

A = 0(e _ 1 ) , A = O(F ) and (3 — 0(E2) to obtain the following approximation for the 
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equilibrium equations: 

AUA2 

inX {A\2 + A66) 

a 1 2 a 

inX (A12 + A66) AnX 

A66X2 

in 

in 

1 + A 4Z?n 

a 

P 

1 

= 0 

Dividing the first row and column by A, the matrix relation becomes: 

An in (A12 + Am) A12 Xa 

in (AI2 + Am) AmX2 in P = 0 

A12 in 1 + A4Z>n 1 

Taking the determinant of the matrix and setting it to zero yields the characteristic equation: 

A6 + ^ ( ^ 2 + ^66)^4 + A4A2 + n2 («12 + A2
6) 

AnA 11^66 AhAQQID\I 
= 0 

where: 

A„ = 
a 12 

DuAu 

It can be seen that there are only even powers of A all with real coefficients so that the 

solutions for A are in conjugate pairs and in positive-negative pairs. 

For n = 0 the characteristic equation reduces to: 

a 4 + a 4 = o 

where the solutions for A are denoted by Ao. The expression for Ao in terms of A„ is 

Aq — —A4 which can be rewritten as Aq = ±iA2 or: 

A - + 1 ± ? A 
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It can be seen that Ao corresponds to the characteristic equation where n — 0, which are 

the axisymmetric modes. The matrix equation becomes: 

An 0 Au A0a0 

0 A66A2 0 fa = o 

0 S J [ 1 

where we multiply «o by A0. The solutions are a 0 = 0 and fa — oo which corresponds to 

pure torsional motion or c*o = —An/ (AoAn) and fa — 0 which corresponds to combined 

radial and longitudinal motions. 

To obtain the first-order expression for a, j3 and A, we start from the zeroth-order results 
, 1 + i. 

V2 
Xa which is associated with Aq s=s i\2

a. To find the perturbation q from the zeroth-

order solution, we use the following expansions: 

A2 = Aq (1 — iq), A4 = Aq (1 - 2iq), A6 = A® ( 1 - 3 i q ) 

The characteristic equation can be rewritten in terms of q: 

Aq (1 - 3ig) + n2 (Al2 + ^ ^ ^ ' -a (°42 + -Aq (1 - 2iq) — Aq (1 — iq) + n2 
= 0 

^11^66 u v "" ° v AhAQQDH 

Since this is linear in q, the solution for this perturbation parameter is readily found: 

n' 
q = -i 

(—an (An + A66)2 + Ana12 + AnAls) 

n 
2Ao (A\iA&qDH\Q + n2 (Au + A66)2 A n D n ) 

((A22 - A n ) (An + A66)2 - A u (A2
2 - A n ) + A n A 2

6 ) 

2 (An - A2
2) [ i A n A 6 6 y / ^ ^ + n2 (A12 + A66)2 

We have to get the right sign for the radical. In the above, we use Im(Xl) > 0, so that 

q > 0. If we use Im.(Aq < 0), then we need a negative sign so that —q < 0. The final 
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results for A are 

Im{\l > 0) : A = ±A0 (1 - iq/2) « ± (i?.e(A0)) (1 + i) e " ^ 2 = ±\aelirl4~iql2 

and 

/m(A2) < 0 : A = ±A0 (1 + iq/2) « ± (i?e(A0)) (1 - i) e iq /2 = ±Xae'^i+^2 

We continue the analysis by determining the corresponding first-order expressions for 

a and /?. First we express 

, 5a (6a-A12/An) 
a = a o + A = A 

and substitute into the characteristic matrix equation. Retaining only the dominant terms, 

we obtain: 

Ah in{A12 + A66) A12 

in (A12 + A 6 6 ) A 6 6 A 2 

A12 

in 

in li 

5a - A\2/A\I 

p 

1 

0 

or 

= 0 

8aAn + in/3 (A12 + A66) 

in {~A2
2 + A n - A i 2 A 6 6 ) + pXlAnAee 

8aA12 - 2igAo£>n + in/3 

In the above it is assumed that p = 0(e2) and the q term is not needed in the middle 

element of the matrix. Solving for (3 and Sa (corresponding to Tto(Aq) > 0) yields: 

P = -
in {-A\2 + A n - A i 2 A 6 6 ) n [~A2

12 + An - A i 2 A 6 6 ) 

Pa = 

A 2A 11 Ag6 
q ( - A 2

2 + A n - A 6 6 A i 2 ) 

A ? i A 6 6 A 2 

A2 An A, = ~Pa 
11^66 
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and: 

in/3 (A i2 + A66) _ in/3a (A12 + A66) 
An ~ An 

It is noted that A,5a,/3 and a are in conjugate pairs and when A changes sign, a also changes 

sign but 5a and ji do not change sign. 

6.3 Boundary conditions 

While the equilibrium equations are used to obtain the functional form of the dispersion 

relation, the boundary conditions are needed along with the dispersion relation to obtain the 

actual natural frequencies and mode shapes. As in the preceding section, the terms in the 

boundary conditions are examined separately for small and large A. Due to the complexity 

of the analytical forms of the modal properties, the focus on the remainder of this chapter 

is on orthotropic materials where the roots A are in complex conjugate pairs and positive-

negative pairs. It is noted that for the more general case of symmetric, balanced laminates, 

the roots A do not follow these simple interrelationships. 

6.3.1 Case I : small A 

6.3.1.1 Zeroth-order results 

We begin with the zeroth-order results for A from equation (6.15): A, = ±As and 

±i\s and from symmetry arguments we have, for the four corresponding coefficients Cj = 
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cj2, c /2 ,1 /2 ,1/2 in equation (6.4). The corresponding solution for q is: 

a 12 A4 

V = Vo + 2 ( 2 , u n4 I'n/ + 1) 

After a series of substitution and perturbation analysis steps, we obtain, for the symmetric 

modes: 

Nx = o (ccosh Ax — cos Ax) « —^ f^11 (ccosh Ax — cos Ax) 
AnAz — Amn* nz 

Mx — A2Dn (ccosh Ax — cos Ax) — nD\2 (n J (ccosh Ax + cos Ax) 
V nJ 

iAmAnA3 ( csinh Ax sin Ax 
Nxe - Mxe/K = - — j — — + 

n \AnA2-n2Am -AnA2-n2A66 

4iAL>66 f n I (csinh Ax — sin Ax) 
V nJ 

Q = — A3Dh (csinh Ax + sin Ax) + nA (Z?12 + 4 Dee) fn — — J (csinh Ax — sin Ax) 

V nJ 

If we use the zeroth-order approximation of ccosh Ax — cos Ax = 0 to satisfy the first 

boundary condition and if we also assume that A satisfies the equation c sinh Ax + sin Ax = 

0 the above can be rewritten as: 

Nx = 0 

Mx = —nD\2 f n — — J (ccosh Ax + cos Ax) 
V nJ 

„, IAQQAWA3 ( csinh Ax sin Ax 
Nx9 - Mxe/R = - J — , x2 „ 2 / l + n \AnA2 -n2A66 -AnA2-n2A, 66 

— 4iAZ?66 f n J (csinh Ax — sin Ax) 
V nJ 

Q = nA (Du + ADQQ) fn j (csinh Ax — sin Ax) 
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Similarly, for anti-symmetric modes one can write: 

Nx — ^ A11A66— (cginjj \ x _ s i n \ x \ ~ —X (Csinh Ax — sin Ax) 
An * - Amv/ nz 

Mx = \2DII (csinh AX - sin Ax) — nDu ^n — —^ (csinh Ax + sin Ax) 

, ̂  iAmAnX3 ( ccoshAx —cosAx 
Nxe - Mxe/R = , „2, + n \AnX2-n2Am -AnX2-n2A66 

— 4iA£>66 ( n ~ — I (ccoshAx + cos Ax) 
V nJ 

Q — — A3Dn (ccosh Ax — cos Ax) + nX (Du + AD66) (n — — j (ccosh Ax + cos Ax) 
V nJ 

Next we perturb the above results to obtain first-order results. 

6.3.1.2 First-order results 

Here we consider the case where the absolute value of the real and imaginary solutions 

for A are not equal, so that we have Xj — ±Ai, ±/A2. First, we consider the symmetric 

boundary conditions and use ±Ai for the real roots and ±?'A2 for the imaginary roots with 
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corresponding coefficients C = c/2 and 1/2 to get: 

Nx = AnA nAm c 
A2 cosh Aix A2 cos A2x 

JAnX\ - Amn2 -AnXj - Amn2
 / 

Mx = Dn (AjCi cosh Ai.t — X2 cos X2x) — nD\2 (n ^ (c\ cosh X\x + cos A2x) 

iAnA66 ( AjsinhAiX A^sinA2x \ 
Nxe - Mxe/R - {cAiiXl _ Aen2 + _AnX2_Amn2) 

— 4 iD66 in I (ciAi sinh Aix — A2 sin X2x) 
\ nJ 

Q = -Dn (cA3 sinh Aix + X\ sin X2x) + n (Di2 + 4Dee) (n - ^ 

(ciAi sinh Aix — A2 sin A2x) 

It is noted that in the above equation, the first-order approximation for a is used. The 

equation for the first row can be rewritten as: 

Af cosh(AiX') 
Au\'{-A66n2 

X2 cos(A2:C) 
-AnX'j-Aeen2 

AjSinh(Aia-) Aj sin(A2.T) 
AuX'{-A66n2 -Au\%-A6en2 

= 0 (6.17) 

The determinant of the matrix is: 

A2 sin XA2 cosh xAi + AI cos xA2 sinh xAi = 0 

To solve this it is necessary to determine the size of the smaller real Ai given the larger 

imaginary %X2 and find rj in this process. We begin with A = iX2 and obtain: 
( 

A2A66£ll2 + A2 

^ +J?oai2 (n2 + 1) - 2nAD22A12Am (n2 - 1) J 

+n2rj0Aee (n2 + 1) 

I t ->\W 2 n2Am (n2D12 (n2 - 1) + 2D6e (n2 - i f ) 

V = \ 
{A66 + oia in2 + 1) - 2n2A12A66) X2 + n2Am (n2 + 1) 
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Then we invert this to get A2: 

»2 _ - (v - m) (n2 + 1) , „ I(n2 + 1) (Vo ~ ri) Af - — L ± n \ ~ — (6.19) 
1 2/t66 V "12 

(r? (1 - 2n2Au) - 2n4 (n2 - 1) (D12 - D22A12) - An2Dm (n2 - l)2) 

2ai2 

The boundary conditions then become: 

Nx = 0 

Mx — Du (A2ci cosh Aix — A2 cos A2:E) — nD\2 ^'n ^ (c\ cosh X\x + cos A2X) 

NX0 — M X 6 / R = —4iD6e f n — — J ( c i A i s i n h A i X — A2s inA2x) 
V nJ 

Q = ~Dn (cA? sinh X^i + \ \ sin X2x) + n (D12 + 4D66) ^ra - ^ 

(ciAi sinh Aix — A2 sin X2x) 

The higher powers of A in the second and fourth boundary conditions can be disregarded 

for small A: 

Nx = 0 

Mx — —nD\2 (n ) (c\ cosh Xix + cos X2x) 
\ nJ 

NX0 — M X E / R — —4IDES (N — — J (ciAi sinh Aix — A2sinA2x) 
V nJ 

Q = n(Di2 + 4 D m ) (n — — | (ciAi sinh Aix — A2sinA2x) 
V nJ 
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6.3.2 Case II A = \ L 

Next we examine the boundary conditions for large AL-

Nx = (AnaX + A12 (in/3 + 1) + A16 (A/3 + ina)) Ce 

Mx = >T (AiA2) CeXx 

Nx6 - MX6/R = Y {AieaX + A66 (A/3 + ina) - 2DWX2 + A26 (in/3 + 1)) Ce 

Q = J2 {-DnX3 + 2A2 (fl - 2in) D16) Ce 

At the left boundary the large Xj with negative real part are important for the edge effect. 

We recall the following large A results from section 6.2.1.3: 

X _ + S \ 2 X 3 _ 1 + ' X 3 x _ 4 AN - A2
12 X 0 - — ^ X A , X0~-IXA, A 0 - - ^ A A , A I I D I I 

f, _ n(-Af2 + An ~A66A12) _ 
/Ja~ A2

nA66X2
a ' P ~ Pa 

, $a Sa-A12/Au , in/3(A12 + Am) in/3a (A12 + Am) 
a — a0 + — — , 8a = j- = j-

The expression for a in terms of f3a becomes 

(A12 + Am) ni(3a + A12 a = — - XA li 

Note that the coefficients of the terms with complex conjugate Xj are in complex conjugate 

pairs. We need to take the sum of two terms with negative real part with coefficients 

Co exp (±i(f>). The displacements associated with the large Xj at the left boundary can be 
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written as: 

w - 2co exp( cos(-^= + </>) 
v 2 \/2 

u = 2 c 0 / ? o e x p ( - ^ | ) c o s ( " ^ | + <t>) 

({A\2 + ^66) nifia + A12) , Aax ( Xax . \ax N 

" = A:Co ^ exp(~ l c o s ( 7 f + " S l n ( vf + 

The derivatives of the displacements in the boundary conditions are: 

wx = - \ / 2 A a c 0 e x p ( - ^ | ) + (j>) + s i n ( ^ | + & 

wxx = 2A2c0 e x p ( - ^ ~ ) + <j>) 

rr. o , , / , AQX , , , AjjiJ ., 
Wxxx = v2A^coexp(--^r) I .cos( + </>)- s m ( y | + 

vx = - \ / 2A Q / 3 a coexp( -^ | ) + </>) + + 

n ((A12 ~t~ Agg) wifi 
+ A 12/ / , 1 \ / 

ux = —2co — COS^"yf ^ exp^_ Vf ^ 
Finally the boundary conditions can be written as: 

Nx = Anux + A12 [v9 + w) = - 2 m c o / ? a A 6 6 e x p ( - ^ ) + 0) 

Ms = = 2 A 2 D n C 0 e x p ( - ^ ) + 

AT /D A ( , \ A66\/2CO , Aax 
- M x 0 / i ? . = A 6 6 [Vx + Ug) = e x p ( — ) 

^tll^a V2 

[XlPaAu + n2 ((A12 + A66) fa - inAn)) c o s ( ^ | + <t>) 

A 2; 

+ (A2/3aAn - n2 ((Ai2 + A66) fa + inA12)) s i n ( + 0) 

Q = = -coV^^nA 3 e x p ( - ^ | ) + 0) - + 
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Figure 6.4: Comparison of exact dispersion relation with the zeroth-order approximation, 

for circumferential mode n — 1 
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Figure 6.5: Comparison of exact dispersion relation with the zeroth-order approximation, 

for circumferential mode n — 2 
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2.5 

0r 1 1 1 1 1 1 
0 0.5 1 1.5 2 2.5 3 

freq(Hz) x 

Figure 6.6: Comparison of exact dispersion relation with the first-order approximation, for 

circumferential mode n = 1 
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Figure 6.7: Comparison of exact dispersion relation with the first-order approximation, for 

circumferential mode n — 2 
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6.3.3 Combining the boundary conditions 

Here we identify and combine the dominant contributions of the eight terms - four for 

small A and four for large A - that are summed for each boundary condition. Parametric 

studies indicate that the second and fourth boundary conditions are satisfied by the large A 

components. The large A contributions are: 

Mx = 2c0DnX2
a sin cj) = -bx (6.20) 

Q = —V2coDn\l (cos 4> + sin 4>) — —b2 

which must be equal and opposite to the small A (A = ±Ai and A = ±/A2) contributions to 

the boundary conditions: 

h = -n£> i 2 ( - 1 /n + n) (ci cosh (As i.r) + cos ( A S 2 . t ) ) 

b2 = n (£>i2 + 4£>66) (—1/n + n) (ciAsl sinh (ASlx) - AS2 sin (AS2x)) 

By enforcing these two boundary conditions, we can solve for Co and 4>\ 

h V2b2 — = — (cot <p — 1) or cot (j> — 1 — 
bi v2 Xabi 

= ~hl 
00 2DuX2

asm(j) 

Given these results for the coefficient c and the angle </>, the mode shapes can be obtained. 

This completes the perturbation analysis of the modal properties of the vibrating, free-free 

orthotropic cylinder. 
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Figure 6.8: Comparison of exact, zeroth- and first-order approximation of a, for circum-

ferential mode n = 1 
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" i 
•0.5 

-1.5 ' X . 

2 2.5 0 0.6 2 2 5 3 

0 0.5 

Figure 6.9: Comparison of exact, zeroth- and first-order approximation of a, for circum-

ferential mode n = 2 
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6.4 Results and discussion 

As a numerical example the isotropic copper pipe in the previous chapter is considered. 

The approach introduced in the previous sections is used to find the dispersion relation 

and to determine the natural frequencies and mode shapes of the cylinder. Figures 6.4 

and 6.5 show the comparison between the exact and the zeroth-order approximation of the 

dispersion relation. In Figures 6.6 and 6.7 the first-order approximation of the dispersion 

relation is compared to the exact dispersion relation. As it can be seen, the first-order 

approximation for the dispersion relation is very accurate for the frequencies lower than 

15000 (Hz). It is noted that there is no D term in the zeroth-order approximation except for 

the D22 term in rj0. 

The exact, zeroth- and first-order approximations for a are shown and compared in 

Figures 6.8 and 6.9. The zeroth- and first-order approximations for a are determined by 

equations (6.13) and (6.12). It can be seen that the zeroth-order approximation is not ac-

curate while the first-order approximation for a improves for low to medium frequencies. 

The wave numbers and natural frequencies are also determined using the first-order 

approximation of the dispersion relation in equation (6.16). The wave numbers are com-

pared with the exact Aj obtained by solving the eighth-order characteristic equation (6.3). 

Figures 6.10 and 6.11 show the comparison between the exact wave numbers and natural 

frequencies and those obtained by first-order approximation of the dispersion relation. The 

wave numbers shown in these figures are the absolute value of the imaginary wave number 
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104 frequency wa\« number 

1.4 

1.2 

0.4 

0.2 

O E-B 
• exact 

0 2 4 6 8 
mode j 

Figure 6.10: Comparison of exact and approximate natural frequencies and wave numbers 

using the first-order approximation, for circumferential mode n — 1 
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in4 frequency wave number 

5 10 15 
mode j 

5 10 
mode j 

15 

Figure 6.11: Comparison of exact and approximate natural frequencies and wave numbers 

using the first-order approximation, for circumferential mode n = 2 
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Figure 6.12: Comparison of exact and approximate natural frequencies and wave numbers 

using the first-order approximation for the dispersion equation, for circumferential mode 

n = 1 
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^ 1.5 

freq (Hz) x 10 

Figure 6.13: Comparison of exact and approximate natural frequencies and wave numbers 

using the first-order approximation for the dispersion equation, for circumferential mode 

n = 2 
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Figure 6.14: Internal forces and moments comparison, for circumferential mode n = 1, 

first mode shape 

A = i\2 . 

The exact wave numbers and natural frequencies are also compared with the first-order 

approximation in Figures 6.12 and 6.13. The circles indicate the locations of the natural 

frequencies on the dispersion curve using the first-order approximation of the dispersion 

relation and the squares show the corresponding exact value. In these figures both real and 

imaginary wave numbers A = Ai and A = i\2 are shown. It is noted that the real roots 

are determined using equations (6.18) and (6.19) as explained in the previous section. The 

natural frequency is also approximated using the eigenvalue problem in equation (6.17). 

To consider the edge effect at the free ends of the cylinder, the results of the analysis 
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Figure 6.15: Internal forces and moments comparison, for circumferential mode n = 1, 

second mode shape 
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Figure 6.16: Internal forces and moments comparison, for circumferential mode n 

first mode shape 
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Figure 6.17: Internal forces and moments comparison, for circumferential mode 

second mode shape 
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Figure 6.18: Comparison of exact dispersion relation for orthotropic laminate with the 

zeroth-order approximation for the dispersion relation, for circumferential mode n = 2 

of the boundary conditions in section 6.3.3 are examined in detail. The internal forces and 

moments (per unit circumferential length) are plotted in Figures 6.14 - 6.17 for circumfer-

ential wave numbers n — 1, 2 for the first two modes. The left half of the cylinder is shown 

in these figures. The first row of plots shows the comparison between the exact and approx-

imate internal forces and the second row shows the contribution of the large A components 

to the internal forces which is significant only at the edges as expected. It can be seen that 

at the boundaries the conditions Mx — 0 and Q — 0 are satisfied. This is because these 

two boundary conditions are the ones used for finding the coefficients CQ and 0 in equation 

(6.20). The other two boundary conditions are approximately satisfied. 
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Figure 6.19: Comparison of exact dispersion relation for orthotropic laminate with the 

first-order approximation for the dispersion relation, for circumferential mode n = 2 
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* 10* * 10* 

Figure 6.20: Comparison of exact, zeroth- and first-order approximations of a for or-

thotropic laminate, for circumferential mode n = 2 
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frequency wave number 

mode j mode j 

Figure 6.21: Comparison of exact and approximate natural frequencies and wave numbers 

for orthotropic laminate using the first-order approximation, for circumferential mode n = 

2 

For our second example, the orthotropic cylinder is considered. The results for cir-

cumferential wave number n = 2 are presented here. Figures 6.18 and 6.19 show the 

approximate dispersion relation using zeroth- and first-order approximations. It can be ob-

served that first-order approximation is very accurate. The exact coefficient a is compared 

with its zeroth- and first-order approximation in Figure 6.20. 

The comparison of exact and first-order approximations of natural frequencies and 

imaginary wave numbers are shown in Figures 6.21. In Figure 6.22, both real and imag-

inary wave numbers associated with the natural frequencies are shown on the dispersion 
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Figure 6.22: Comparison of exact and approximate natural frequencies and wave numbers 

for orthotropic laminate using the first-order approximation for the dispersion relation, for 

circumferential mode n — 2 
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Figure 6.23: Internal forces and moments comparison for orthotropic laminate, for circum-

ferential mode n = 2 
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Figure 6.24: Internal forces and moments comparison for orthotropic laminate, for circum-

ferential mode n — 2 
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curves. The squares are the exact values while the circles are the first-order approximation 

results. It can be seen that the wave number approximations are relatively accurate while 

the accuracy of the natural frequencies is good only for low to mid frequencies. The inter-

nal forces for the left half of the cylinder is shown in Figures 6.23 and 6.24 for the first two 

modes. 

6.4.1 Application to system identification 

The perturbation results in sections 6.2.1.1 - section 6.2.1.3 provides simplified disper-

sion relations and expressions for modal properties which can be used for system identifi-

cation. If the natural frequencies of a cylinder is known from experiments, then by using 

the dispersion relations for the first circumferential wave number one can determine several 

of the material properties. For instance, the density of the natural frequencies with respect 

to frequency (also known as the modal density) increases in the vicinity of the point rj0. 

This can be seen in Figures 6.13 and 6.22. Using this property one can determine the loca-

tion of r]o and therefore evaluate D22 using equation (6.9). Subsequently, the zeroth-order 

approximation of rj can be used to find a12- After finding these parameters one can use the 

first-order dispersion relation, which contains more parameters, to evaluate the relationship 

between these unknowns. It is noted that the system identification application of this study 

is still in its preliminary stages and can progress substantially further as explained in section 

7.2. 
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Concluding remarks 

In this thesis we develop new methods in solid mechanics that can be used for studying 

the vibration behavior of passenger car bodies in high-speed trains. Some of these methods 

are fundamental in nature and can be applied to other structural systems. Three related 

topics were examined. First, the propagation of vibration energy from the wheels of the 

high-speed train to the car body is investigated. Using a finite element model of the car 

and response data under test runs, fatigue reliability of the aluminum car body is examined. 

In addition, fatigue test procedures with static and dynamic loads are proposed. In the 

next part of the thesis, highly localized stresses near the openings are examined. A semi-

analytical approach based on a method of complex variables is developed to enhance the 

results of coarse-mesh finite element models to predict the stress concentrations around 

openings. In the last part of the thesis, the vibrations of cylindrical shells are examined. 

This study is motivated by the fact that advanced car body designs for high-speed rail tend 
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to have tubular frames with orthotropic shell properties. Perturbation analysis is used to 

find relatively simple closed-form analytical expressions for the dispersion relation and the 

modal properties of the vibrating cylinders. It is shown how these relations can be used 

for system identification purposes. A more extended summary of this thesis is given in the 

following section. 

7.1 Summary of results 

The dynamic behavior of the passenger car in HSR-350X is studied using a combination 

of analytical, computational and experimental techniques. The relationships between the 

characteristics of the excitation and response as measured during test runs of the train under 

operating conditions are examined using random vibration techniques. The frequency de-

pendent properties for the suspension between the car body and bogie are evaluated using 

these results and the results of a finite element analysis of the car body. This properties 

of the suspension are then used to obtain the power spectral density of stress due to bogie 

motion. These properties are also used to compute the stress transfer function at locations 

of the car body where the stresses are high. The stress time history due to the motion at 

the bogies is used to assess the fatigue reliability of the passenger cars using deterministic 

rainflow counting procedures as well as using stochastic techniques. 

The stress patterns in the car body are examined in detail using finite element analysis. 

Localized stress concentrations are noted around the corners of the door and windows of the 
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passenger car body. Fatigue testing procedures are then proposed to reproduce, as closely 

as possible, these observed stress patterns. The loads for fatigue testing are determined 

by fitting the static and dynamic stresses and displacements to the aforementioned stress 

patterns. 

In assessing the reliability of the car body it was found that the predicted damage due 

to fatigue is very small even around the door and window openings. One reason is that 

the mesh of the finite-element model is not fine enough to capture the stress concentration 

around the corners of openings. To address this limitation, a semi-analytical method is 

developed that can enhance the results of coarse-mesh finite element analysis to better 

predict the stress concentrations around rectangular openings. This method is based on 

a complex variable technique, but differs from previous approaches in that the boundary 

conditions are satisfied using regression instead of complicated contour integrals. This new 

semi-analytical method is used to evaluate stress concentrations around openings due to 

constant and linearly varying far-field moments. While the stress distributions evaluated 

using the proposed numerical approach have a spatial pattern that is somewhat different 

than fine-mesh finite element results, the magnitudes of the stresses are very similar. 

The global characteristics of car body vibrations are examined by studying the vibra-

tions of orthotropic and other types of cylindrical shells. Numerical methods for solving 

the exact equations for the natural frequencies and mode shapes are reviewed and compared 

with the results of the Rayleigh-Ritz approach. The Rayleigh-Ritz approach is extended us-

ing Fliigge shell theory. It is shown that, while in many cases the energy method provides 
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good estimates of natural frequencies, it does not result in accurate mode shapes because 

the mode functions assumed for the longitudinally varying components do not satisfy the 

three dimensional boundary conditions and do not account for edge effects. 

In the last part of this thesis, perturbation analysis is used to derive analytical expres-

sions that describe the free vibration of cylinders. These results are in terms of relatively 

simple closed-form mathematical expressions that provide insight into the cylinder vibra-

tion behavior. It is shown that these expressions are also useful for system identification, 

where free-vibration measurements are used to determine the elastic properties of the cylin-

der. 

7.2 Future research 

The high-speed train HSR-350x is now in commercial passenger operation and KRRI 

will soon be testing the next generation HEMU-400x with operating speed of 370 km/h. 

The proposed test procedures for fatigue assessment will be used in testing the new gen-

eration train. These test procedures are in the preliminary stages of development and need 

to be improved. For instance more points for fitting the displacements and stresses can be 

used in the least-squares analysis. The locations of the regression points can also be moved 

to the places with high stress. Alternatively, weighted least-squares analysis can be used to 

put more emphasis on the locations of high stress. Although only concentrated loads were 

considered in this study, it is planned to use distributed loads which may result in more 
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accuracy in matching actual loads. 

In studying the highly localized stresses around corners, it was found that the spatial 

stress patterns estimated by the proposed approach are not completely similar to the stress 

patterns obtained by fine-mesh finite element analysis. It is believed that this is the result of 

considering only linear and constant far-field moments. We thus intend to include nonlinear 

variations of the far-field moments in our future studies. One other possible extension is 

to use the results obtained in this study in micro-mechanics problems since many micro-

mechanical theories are based on models of inclusions in infinite domains. The proposed 

method can also be used for evaluating stress concentrations for more complex geometries. 

The conformal transformations can be determined numerically for holes and inclusions of 

a wide variety of shapes. 

The perturbation analysis provides zeroth- and first-order approximations of the disper-

sion relation which relates wave numbers to the natural frequencies. These approximations 

can be used for the identification of cylinder material properties provided that experimental 

measurements from free vibration of the cylinder are available. For example, the perturba-

tion analysis shows the frequency associated with the high modal density region (the region 

that pertains to very small longitudinal wave numbers) in the dispersion plots is related to 

only one of the material properties. Therefore if one can identify this frequency from ex-

perimental measurements the corresponding material property can be found accordingly. 

On the other hand the zeroth order approximation of the dispersion curve includes only 

one extra material property in addition to the one that is already identified. This material 
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property can be identified by matching this dispersion curve with the one obtained from 

experimental measurements. Once these parameters are found, one can use the higher or-

der dispersion relations, which contain more parameters, to find the relationships between 

these parameters. It is noted that in the analysis developed in chapter 6 was generally re-

stricted to orthotropic material properties. The analysis can be extended to the more general 

case of symmetric, balanced laminated cylinders. 
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Boundary conditions at the hole 

In this appendix it is shown how the boundary conditions in equation (4.17) for a trac-

tion free hole can be rewritten in terms of the analytic functions <f>(z) and ifi(z). Then it is 

shown how these boundary conditions can be transformed into a much simpler form. 

Let s = sin 9 and c = cos 6. Then equation (4.17) can be rewritten as: 

-ks = Mxc + (Mxy - P)s (A.l) 

kc = Mys + (Mxy + P)c 

At the boundary, which corresponds to the unit circle, we have: 

z — c + is 

1 
z = — = c — IS 

z 
dz 
Te = ~s + l c 
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In addition one can show: 

2Re J(fdz) = J ( - ( / ' + T)s + (f - ~p)tc) d6 = (f + / ) (A.2) 

2 Im j ( f d z ) = J ( ( / ' - f ) i s + (/' + f ) c ) d6 = -i(f - J) (A.3) 

Therefore: 

P= f Nnds = f (Nxc + Nys)dO = —2D [ ((</>" - + (<j>" + W)c) d0 
Jo Jo Jo 

P = 2iD (<p' - V) 

Substituting the above integral into equations (A.l), the expressions for the boundary con-

ditions in terms of the analytic functions </> and ip become: 

- D 

\ - v 

~Y 

- D 

1 - v 

(1 + i/) (4' + <jif)c+ ((z4>" + Z<p")c + (zcf>" - z(j)")is) + 

((ip' + ip')c + (ip' - ip')is) +2 i(4>' —ks 

1 - v 
(1 + v) ((f)' + <p') s — ((1(f)" + Z(j)")s - (z(t>" - Z(f>")ic) 

((ip' + ip')s - (ip' - ip')ic) - 2i (4)' - (p') c kc (A.4) 

These boundary conditions can be transformed into a simpler form using some integral 

relations. Using the relation in (A.3) one can write: 

2Im J(l(p')'dz = -i {z<f>' - z<p') 

= j [('z(f>" - z$")is + (z(P" + z f f i c ] d9- j (V Vs. . (V . V X 

2 Z" Z* 
dd 

The argument of the second integral in the above equation can be simplified as: 

(V v , (V , <p \ 9 . V i l l , -Tj\ , / , / -Jj-s-
(-o - =^)ls + (~2 + =Z C =— + — = W+ <t>)c + (<p - < P ' ) l S 

Zz z zz Z2 z z 
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Therefore: 

J i{J<i)" - zfjF)s + {z4>" + zljf)cdQ = J{<f>' + W)c - i{4>' - J')sdd - i (:z<j>' - z j ' ) 

The same argument can be used to show: 

J(z<j>" + zr)s - i(z4>" - z~(jf)cdO = - J(tf + lfi)s + i(4>' - lj/)cd0 - (?</>' + z$) 

Integrating the equations (A.4) for the boundary conditions and using the above formula 

one can write: 

i ^ - ( z f i + i 3 ^ {<f> - = ~ J ksdd 

+ + ^ + + + = ± J kcdd 

The above equations can be rewritten as: 

zW + ^ + n4> = kz + k! 

where n = — (3 + v)j(\ — u) and k' is a complex constant of integration. It can be shown 

that for the case of a plate with a hole, the constants k and k' can be set to zero [Savin, 

1961]. 
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